Several Complex Variables with Connections to Algebraic Geometry and Lie Groups

Author: Joseph L. Taylor

Publisher: American Mathematical Soc.

ISBN: 082183178X

Category: Mathematics

Page: 507

View: 5446

This text presents an integrated development of the theory of several complex variables and complex algebraic geometry, leading to proofs of Serre's celebrated GAGA theorems relating the two subjects, and including applications to the representation theory of complex semisimple Lie groups. It includes a thorough treatment of the local theory using the tools of commutative algebra, an extensive development of sheaf theory and the theory of coherent analytic and algebraic sheaves, proofs of the main vanishing theorems for these categories of sheaves, and a complete proof of the finite dimensionality of the cohomology of coherent sheaves on compact varieties. The vanishing theorems have a wide variety of applications and these are covered in detail. Of particular interest are the last three chapters, which are devoted to applications of the preceding material to the study of the structure and representations of complex semisimple Lie groups.Included in this text are introductions to harmonic analysis, the Peter-Weyl theorem, Lie theory and the structure of Lie algebras, semisimple Lie algebras and their representations, algebraic groups and the structure of complex semisimple Lie groups. All of this culminates in Milicic's proof of the Borel-Weil-Bott theorem, which makes extensive use of the material developed earlier in the text. There are numerous examples and exercises in each chapter. This modern treatment of a classic point of view would be an excellent text for a graduate course on several complex variables, as well as a useful reference for the expert.
Release

Functions of Several Complex Variables and Their Singularities

Author: Wolfgang Ebeling

Publisher: American Mathematical Soc.

ISBN: 0821833197

Category: Mathematics

Page: 312

View: 8089

The book provides an introduction to the theory of functions of several complex variables and their singularities, with special emphasis on topological aspects. The topics include Riemann surfaces, holomorphic functions of several variables, classification and deformation of singularities, fundamentals of differential topology, and the topology of singularities. The aim of the book is to guide the reader from the fundamentals to more advanced topics of recent research. All the necessary prerequisites are specified and carefully explained. The general theory is illustrated by various examples and applications.
Release

Riemann Surfaces by Way of Complex Analytic Geometry

Author: Dror Varolin

Publisher: American Mathematical Soc.

ISBN: 0821853694

Category: Mathematics

Page: 236

View: 5526

This book establishes the basic function theory and complex geometry of Riemann surfaces, both open and compact. Many of the methods used in the book are adaptations and simplifications of methods from the theories of several complex variables and complex analytic geometry and would serve as excellent training for mathematicians wanting to work in complex analytic geometry. After three introductory chapters, the book embarks on its central, and certainly most novel, goal of studying Hermitian holomorphic line bundles and their sections. Among other things, finite-dimensionality of spaces of sections of holomorphic line bundles of compact Riemann surfaces and the triviality of holomorphic line bundles over Riemann surfaces are proved, with various applications. Perhaps the main result of the book is Hormander's Theorem on the square-integrable solution of the Cauchy-Riemann equations. The crowning application is the proof of the Kodaira and Narasimhan Embedding Theorems for compact and open Riemann surfaces. The intended reader has had first courses in real and complex analysis, as well as advanced calculus and basic differential topology (though the latter subject is not crucial). As such, the book should appeal to a broad portion of the mathematical and scientific community. This book is the first to give a textbook exposition of Riemann surface theory from the viewpoint of positive Hermitian line bundles and Hormander $\bar \partial$ estimates. It is more analytical and PDE oriented than prior texts in the field, and is an excellent introduction to the methods used currently in complex geometry, as exemplified in J. P. Demailly's online but otherwise unpublished book ``Complex analytic and differential geometry.'' I used it for a one quarter course on Riemann surfaces and found it to be clearly written and self-contained. It not only fills a significant gap in the large textbook literature on Riemann surfaces but is also rather indispensible for those who would like to teach the subject from a differential geometric and PDE viewpoint. --Steven Zelditch
Release

Global Calculus

Author: S. Ramanan

Publisher: American Mathematical Soc.

ISBN: 0821837028

Category: Mathematics

Page: 316

View: 3622

The power that analysis, topology and algebra bring to geometry has revolutionised the way geometers and physicists look at conceptual problems. Some of the key ingredients in this interplay are sheaves, cohomology, Lie groups, connections and differential operators. In Global Calculus, the appropriate formalism for these topics is laid out with numerous examples and applications by one of the experts in differential and algebraic geometry. Ramanan has chosen an uncommon but natural path through the subject. In this almost completely self-contained account, these topics are developed from scratch. The basics of Fourier transforms, Sobolev theory and interior regularity are proved at the same time as symbol calculus, culminating in beautiful results in global analysis, real and complex. Many new perspectives on traditional and modern questions of differential analysis and geometry are the hallmarks of the book. The book is suitable for a first year graduate course on Global Analysis.
Release

Introduction to Complex Analysis in Several Variables

Author: Volker Scheidemann

Publisher: Springer Science & Business Media

ISBN: 9783764374914

Category: Mathematics

Page: 171

View: 9924

This book provides a comprehensive introduction to complex analysis in several variables. One major focus of the book is extension phenomena alien to the one-dimensional theory (Hartog's Kugelsatz, theorem of Cartan-Thullen, Bochner's theorem). The book primarily aims at students starting to work in the field of complex analysis in several variables and teachers who want to prepare a university lecture. Therefore, the book contains more than 50 examples and more than 100 supporting exercises.
Release

Complex Variables

Author: Joseph L. Taylor

Publisher: American Mathematical Soc.

ISBN: 0821869019

Category: Mathematics

Page: 305

View: 7176

The text covers a broad spectrum between basic and advanced complex variables on the one hand and between theoretical and applied or computational material on the other hand. With careful selection of the emphasis put on the various sections, examples, and exercises, the book can be used in a one- or two-semester course for undergraduate mathematics majors, a one-semester course for engineering or physics majors, or a one-semester course for first-year mathematics graduate students. It has been tested in all three settings at the University of Utah. The exposition is clear, concise, and lively. There is a clean and modern approach to Cauchy's theorems and Taylor series expansions, with rigorous proofs but no long and tedious arguments. This is followed by the rich harvest of easy consequences of the existence of power series expansions. Through the central portion of the text, there is a careful and extensive treatment of residue theory and its application to computation of integrals, conformal mapping and its applications to applied problems, analytic continuation, and the proofs of the Picard theorems. Chapter 8 covers material on infinite products and zeroes of entire functions. This leads to the final chapter which is devoted to the Riemann zeta function, the Riemann Hypothesis, and a proof of the Prime Number Theorem.
Release

An Introduction to Symplectic Geometry

Author: Rolf Berndt

Publisher: American Mathematical Soc.

ISBN: 9780821820568

Category: Mathematics

Page: 195

View: 9531

Starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kahler manifolds, and coadjoint orbits.Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics.This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations.
Release

Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48)

Author: Kari Astala,Tadeusz Iwaniec,Gaven Martin

Publisher: Princeton University Press

ISBN: 9780691137773

Category: Mathematics

Page: 677

View: 4875

This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.
Release

Dirac Operators in Representation Theory

Author: Jing-Song Huang,Pavle Pandzic

Publisher: Springer Science & Business Media

ISBN: 0817644938

Category: Mathematics

Page: 200

View: 7637

This book presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. The book is an excellent contribution to the mathematical literature of representation theory, and this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics.
Release

Foundations of Differentiable Manifolds and Lie Groups

Author: Frank W. Warner

Publisher: Springer Science & Business Media

ISBN: 1475717997

Category: Mathematics

Page: 276

View: 9848

Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.
Release

Harmonic Analysis, the Trace Formula, and Shimura Varieties

Proceedings of the Clay Mathematics Institute, 2003 Summer School, the Fields Institute, Toronto, Canada, June 2-27, 2003

Author: Clay Mathematics Institute. Summer School

Publisher: American Mathematical Soc.

ISBN: 9780821838440

Category: Mathematics

Page: 689

View: 6342

The modern theory of automorphic forms, embodied in what has come to be known as the Langlands program, is an extraordinary unifying force in mathematics. It proposes fundamental relations that tie arithmetic information from number theory and algebraic geometry with analytic information from harmonic analysis and group representations. These "reciprocity laws", conjectured by Langlands, are still largely unproved. However, their capacity to unite large areas of mathematics insures that they will be a central area of study for years to come. The goal of this volume is to provide an entry point into this exciting and challenging field. It is directed on the one hand at graduate students and professional mathematicians who would like to work in the area. The longer articles in particular represent an attempt to enable a reader to master some of the more difficult techniques. On the other hand, the book will also be useful to mathematicians who would like simply to understand something of the subject. They will be able to consult the expository portions of the various articles. The volume is centered around the trace formula and Shimura varieties. These areas are at the heart of the subject, but they have been especially difficult to learn because of a lack of expository material. The volume aims to rectify the problem. It is based on the courses given at the 2003 Clay Mathematics Institute Summer School. However, many of the articles have been expanded into comprehensive introductions, either to the trace formula or the theory of Shimura varieties, or to some aspect of the interplay and application of the two areas.
Release

Differential Geometry, Lie Groups, and Symmetric Spaces

Author: Sigurdur Helgason

Publisher: American Mathematical Soc.

ISBN: 0821828487

Category: Mathematics

Page: 640

View: 5892

A great book ... a necessary item in any mathematical library. --S. S. Chern, University of California A brilliant book: rigorous, tightly organized, and covering a vast amount of good mathematics. --Barrett O'Neill, University of California This is obviously a very valuable and well thought-out book on an important subject. --Andre Weil, Institute for Advanced Study The study of homogeneous spaces provides excellent insights into both differential geometry and Lie groups. In geometry, for instance, general theorems and properties will also hold for homogeneous spaces, and will usually be easier to understand and to prove in this setting. For Lie groups, a significant amount of analysis either begins with or reduces to analysis on homogeneous spaces, frequently on symmetric spaces. For many years and for many mathematicians, Sigurdur Helgason's classic Differential Geometry, Lie Groups, and Symmetric Spaces has been--and continues to be--the standard source for this material. Helgason begins with a concise, self-contained introduction to differential geometry. Next is a careful treatment of the foundations of the theory of Lie groups, presented in a manner that since 1962 has served as a model to a number of subsequent authors. This sets the stage for the introduction and study of symmetric spaces, which form the central part of the book. The text concludes with the classification of symmetric spaces by means of the Killing-Cartan classification of simple Lie algebras over $\mathbb{C}$ and Cartan's classification of simple Lie algebras over $\mathbb{R}$, following a method of Victor Kac. The excellent exposition is supplemented by extensive collections of useful exercises at the end of each chapter. All of the problems have either solutions or substantial hints, found at the back of the book. For this edition, the author has made corrections and added helpful notes and useful references. Sigurdur Helgason was awarded the Steele Prize for Differential Geometry, Lie Groups, and Symmetric Spaces and Groups and Geometric Analysis.
Release

Modern Geometric Structures and Fields

Author: Сергей Петрович Новиков,Искандер Асанович Тайманов

Publisher: American Mathematical Soc.

ISBN: 0821839292

Category: Mathematics

Page: 633

View: 6528

The book presents the basics of Riemannian geometry in its modern form as geometry of differentiable manifolds and the most important structures on them. The authors' approach is that the source of all constructions in Riemannian geometry is a manifold that allows one to compute scalar products of tangent vectors. With this approach, the authors show that Riemannian geometry has a great influence to several fundamental areas of modern mathematics and its applications. In particular, Geometry is a bridge between pure mathematics and natural sciences, first of all physics. Fundamental laws of nature are formulated as relations between geometric fields describing various physical quantities. The study of global properties of geometric objects leads to the far-reaching development of topology, including topology and geometry of fiber bundles. Geometric theory of Hamiltonian systems, which describe many physical phenomena, led to the development of symplectic and Poisson geometry. Field theory and the multidimensional calculus of variations, presented in the book, unify mathematics with theoretical physics. Geometry of complex and algebraic manifolds unifies Riemannian geometry with modern complex analysis, as well as with algebra and number theory. Prerequisites for using the book include several basic undergraduate courses, such as advanced calculus, linear algebra, ordinary differential equations, and elements of topology.
Release

Acta Numerica 2008:

Author: A. Iserles

Publisher: Cambridge University Press

ISBN: 9780521516426

Category: Mathematics

Page: 416

View: 4845

Acta Numerica is a high-impact factor, prestigious annual publication containing invited surveys by leading researchers in numerical mathematics and scientific computing. The surveys present overviews of developments in their area and provide techniques and analyses. It is essential reading for practitioners and researchers. This volume was originally published in 2008.
Release

Lie Groups, Physics, and Geometry

An Introduction for Physicists, Engineers and Chemists

Author: Robert Gilmore

Publisher: Cambridge University Press

ISBN: 113946907X

Category: Science

Page: N.A

View: 3025

Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.
Release

Foundations of Analysis

Author: Joseph L. Taylor

Publisher: American Mathematical Soc.

ISBN: 0821889842

Category: Mathematics

Page: 398

View: 7232

Foundations of Analysis is an excellent new text for undergraduate students in real analysis. More than other texts in the subject, it is clear, concise and to the point, without extra bells and whistles. It also has many good exercises that help illustrate the material. My students were very satisfied with it. --Nat Smale, University of Utah I have taught our Foundations of Analysis course (based on Joe Taylor.s book) several times recently, and have enjoyed doing so. The book is well-written, clear, and concise, and supplies the students with very good introductory discussions of the various topics, correct and well-thought-out proofs, and appropriate, helpful examples. The end-of-chapter problems supplement the body of the text very well (and range nicely from simple exercises to really challenging problems). --Robert Brooks, University of Utah An excellent text for students whose future will include contact with mathematical analysis, whatever their discipline might be. It is content-comprehensive and pedagogically sound. There are exercises adequate to guarantee thorough grounding in the basic facts, and problems to initiate thought and gain experience in proofs and counterexamples. Moreover, the text takes the reader near enough to the frontier of analysis at the calculus level that the teacher can challenge the students with questions that are at the ragged edge of research for undergraduate students. I like it a lot. --Don Tucker, University of Utah My students appreciate the concise style of the book and the many helpful examples. --W.M. McGovern, University of Washington Analysis plays a crucial role in the undergraduate curriculum. Building upon the familiar notions of calculus, analysis introduces the depth and rigor characteristic of higher mathematics courses. Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. The list of topics covered is rather standard, although the treatment of some of them is not. The several variable material makes full use of the power of linear algebra, particularly in the treatment of the differential of a function as the best affine approximation to the function at a given point. The text includes a review of several linear algebra topics in preparation for this material. In the final chapter, vector calculus is presented from a modern point of view, using differential forms to give a unified treatment of the major theorems relating derivatives and integrals: Green's, Gauss's, and Stokes's Theorems. At appropriate points, abstract metric spaces, topological spaces, inner product spaces, and normed linear spaces are introduced, but only as asides. That is, the course is grounded in the concrete world of Euclidean space, but the students are made aware that there are more exotic worlds in which the concepts they are learning may be studied.
Release

Introduction to Singularities and Deformations

Author: Gert-Martin Greuel,Christoph Lossen,Eugenii I. Shustin

Publisher: Springer Science & Business Media

ISBN: 3540284192

Category: Mathematics

Page: 472

View: 3959

Singularity theory is a young, rapidly-growing topic with connections to algebraic geometry, complex analysis, commutative algebra, representations theory, Lie groups theory and topology, and many applications in the natural and technical sciences. This book presents the basic singularity theory of analytic spaces, including local deformation theory and the theory of plane curve singularities. It includes complete proofs.
Release

A Course in Operator Theory

Author: John B. Conway

Publisher: American Mathematical Soc.

ISBN: 0821820656

Category: Mathematics

Page: 372

View: 9077

A new volume in the marquee series of the AMS, featuring broad mathematical topics written by some of the best and brightest that the mathematics field has to offer. All titles have attractive hardcovers and market-oriented prices.
Release

Lie Groups

Author: J.J. Duistermaat,Johan A.C. Kolk

Publisher: Springer Science & Business Media

ISBN: 3642569366

Category: Mathematics

Page: 344

View: 1897

This (post) graduate text gives a broad introduction to Lie groups and algebras with an emphasis on differential geometrical methods. It analyzes the structure of compact Lie groups in terms of the action of the group on itself by conjugation, culminating in the classification of the representations of compact Lie groups and their realization as sections of holomorphic line bundles over flag manifolds. Appendices provide background reviews.
Release