Programming Computer Vision with Python

Tools and algorithms for analyzing images

Author: Jan Erik Solem

Publisher: "O'Reilly Media, Inc."

ISBN: 1449341934

Category: Computers

Page: 264

View: 7186

If you want a basic understanding of computer vision’s underlying theory and algorithms, this hands-on introduction is the ideal place to start. You’ll learn techniques for object recognition, 3D reconstruction, stereo imaging, augmented reality, and other computer vision applications as you follow clear examples written in Python. Programming Computer Vision with Python explains computer vision in broad terms that won’t bog you down in theory. You get complete code samples with explanations on how to reproduce and build upon each example, along with exercises to help you apply what you’ve learned. This book is ideal for students, researchers, and enthusiasts with basic programming and standard mathematical skills. Learn techniques used in robot navigation, medical image analysis, and other computer vision applications Work with image mappings and transforms, such as texture warping and panorama creation Compute 3D reconstructions from several images of the same scene Organize images based on similarity or content, using clustering methods Build efficient image retrieval techniques to search for images based on visual content Use algorithms to classify image content and recognize objects Access the popular OpenCV library through a Python interface
Release

Bildverstehen

Author: Axel Pinz

Publisher: Springer-Verlag

ISBN: 3709193583

Category: Computers

Page: 235

View: 8291

Bildverstehen, Bilder und die ihnen zugrundeliegenden Szenen mit den darin vorkommenden Objekten verstehen und beschreiben, das bedeutet aus der Sicht der Informatik: Sehen mit dem Computer - ‘Computer Vision’. Das Buch behandelt neben wichtigen Merkmalen des menschlichen visuellen Systems auch die nötigen Grundlagen aus digitaler Bildverarbeitung und aus künstlicher Intelligenz. Im Zentrum steht die schrittweise Entwicklung eines neuen Systemmodells für Bildverstehen, anhand dessen verschiedene "Abstraktionsebenen" des maschinellen Sehens, wie Segmentation, Gruppierung auf Aufbau einer Szenenbeschreibung besprochen werden. Das Buch bietet außerdem einen Überblick über gegenwärtige Trends in der Forschung sowie eine sehr aktuelle und ausführliche Bibliographie dieses Fachgebietes. Es liegt hiermit erstmalig eine abgeschlossene, systematische Darstellung dieses noch jungen und in dynamischer Entwicklung begriffenen Fachgebietes vor.
Release

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 1548

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.
Release

Raspberry-Pi-Kochbuch

Lösungen für alle Software- und Hardware-Probleme. Für alle Versionen inklusive Pi 3 & Zero

Author: Simon Monk

Publisher: O'Reilly

ISBN: 396010118X

Category: Business & Economics

Page: 484

View: 8441

Das Raspberry-Pi-Universum wächst täglich. Ständig werden neue Erweiterungs-Boards und Software-Bibliotheken für den Single-Board-Computer entwickelt. Die zweite Ausgabe dieses beliebten Kochbuchs bietet mehr als 240 Hands-on-Rezepte für den Betrieb des kleinen Low-Cost-Computers mit Linux und für die Programmierung des Pi mit Python. Außerdem erläutert es die Anbindung von Sensoren, Motoren und anderer Hardware, einschließlich Arduino und das Internet der Dinge. Power-Maker und Autor Simon Monk vermittelt grundlegendes Know-how, das Ihnen hilft, auch neue Technologien und Entwicklungen zu verstehen und so mit dem Raspberry-Pi-Ökosystem mitzuwachsen. Dieses Kochbuch ist ideal für Programmierer und Bastler, die mit dem Pi bereits erste Erfahrungen gemacht haben. Alle Codebeispiele sind auf der Website zum Buch verfügbar. - Richten Sie Ihren Raspberry Pi ein und verbinden Sie ihn mit dem Netz. - Arbeiten Sie mit seinem Linux-basierten Betriebssystem Raspbian. - Lernen Sie, den Pi mit Python zu programmieren. - Verleihen Sie Ihrem Pi "Augen" für Anwendungen, die maschinelles Sehen erfordern. - Steuern Sie Hardware über den GPIO-Anschluss. - Verwenden Sie den Raspberry Pi, um unterschiedliche Motoren zu betreiben. - Arbeiten Sie mit Schaltern, Tastaturen und anderen digitalen Eingaben. - Verwenden Sie Sensoren zur Messung von Temperatur, Licht und Entfernung. - Realisieren Sie auf verschiedenen Wegen eine Verbindung zu IoT-Geräten. - Entwerfen Sie dynamische Projekte mit Raspberry Pi und dem Arduino.
Release

Matlab für Dummies

Author: Jim Sizemore

Publisher: John Wiley & Sons

ISBN: 352780871X

Category: Computers

Page: 416

View: 8517

Ob Naturwissenschaftler, Mathematiker, Ingenieur oder Datenwissenschaftler - mit MATLAB haben Sie ein mächtiges Tool in der Hand, das Ihnen die Arbeit mit Ihren Daten erleichtert. Aber wie das mit manch mächtigen Dingen so ist - es ist auch ganz schön kompliziert. Aber keine Sorge! Jim Sizemore führt Sie in diesem Buch Schritt für Schritt an das Programm heran - von der Installation und den ersten Skripten bis hin zu aufwändigen Berechnungen, der Erstellung von Grafiken und effizienter Fehlerbehebung. Sie werden begeistert sein, was Sie mit MATLAB alles anstellen können.
Release

Programmieren lernen mit Python

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868999477

Category: Computers

Page: 312

View: 8002

Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Jenseits reiner Theorie: Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen: Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält. Starten Sie durch: Beginnen Sie mit den Grundlagen der Programmierung und den verschiedenen Programmierkonzepten, und lernen Sie, wie ein Informatiker zu programmieren.
Release

Algorithmen in C

Author: Robert Sedgewick

Publisher: Pearson Deutschland GmbH

ISBN: 9783893193769

Category: Algorithmus

Page: 742

View: 7067

Release

Digitale Bildverarbeitung

Eine Einführung mit Java und ImageJ

Author: Wilhelm Burger,Mark James Burge

Publisher: Springer-Verlag

ISBN: 354027653X

Category: Computers

Page: 532

View: 8631

Die Autoren geben eine fundierte Einführung in die wichtigsten Methoden der digitalen Bildverarbeitung. Dabei steht die praktische Anwendbarkeit im Vordergrund, formale und mathematische Aspekte sind auf das Wesentliche reduziert, ohne dabei auf eine präzise und konsistente Vorgehensweise zu verzichten. Der Text eignet sich für technisch orientierte Studiengänge ab dem 3.Semester und basiert auf der mehrjährigen Lehrerfahrung der Autoren zu diesem Thema. Der Einsatz in der Lehre wird durch zahlreiche praktische Übungsaufgaben unterstützt. Das Buch eignet sich auch als detaillierte Referenz für Praktiker und Anwender gängiger Verfahren der digitalen Bildverarbeitung, z.B. in der Medizin, der Materialprüfung, der Robotik oder der Medientechnik. Softwareseitig basiert das Buch auf der in Java implementierten und frei verfügbaren Bildverarbeitungsumgebung ImageJ.
Release

Die Zukunft der Intelligenz

wie das Gehirn funktioniert, und was Computer davon lernen können

Author: Jeff Hawkins

Publisher: N.A

ISBN: 9783499621673

Category:

Page: 315

View: 5015

Release

Routineaufgaben mit Python automatisieren

Praktische Programmierlösungen für Einsteiger

Author: Al Sweigart

Publisher: dpunkt.verlag

ISBN: 3864919932

Category: Computers

Page: 576

View: 7361

Wenn Sie jemals Stunden damit verbracht haben, Dateien umzubenennen oder Hunderte von Tabelleneinträgen zu aktualisieren, dann wissen Sie, wie stumpfsinnig manche Tätigkeiten sein können. Wie wäre es, den Computer dazu zu bringen, diese Arbeiten zu übernehmen? In diesem Buch lernen Sie, wie Sie mit Python Aufgaben in Sekundenschnelle erledigen können, die sonst viel Zeit in Anspruch nehmen würden. Programmiererfahrung brauchen Sie dazu nicht: Wenn Sie einmal die Grundlagen gemeistert haben, werden Sie Python-Programme schreiben, die automatisch alle möglichen praktischen Aufgaben für Sie abarbeiten: • eine oder eine Vielzahl von Dateien nach Texten durchsuchen • Dateien und Ordner erzeugen, aktualisieren, verschieben und umbenennen • das Web durchsuchen und Inhalte herunterladen • Excel-Dateien aktualisieren und formatieren • PDF-Dateien teilen, zusammenfügen, mit Wasserzeichen versehen und verschlüsseln • Erinnerungsmails und Textnachrichten verschicken • Online-Formulare ausfüllen Schritt-für-Schritt-Anleitungen führen Sie durch jedes Programm und Übungsaufgaben am Ende jedes Kapitels fordern Sie dazu auf, die Programme zu verbessern und Ihre Fähigkeiten auf ähnliche Problemstellungen zu richten. Verschwenden Sie nicht Ihre Zeit mit Aufgaben, die auch ein gut dressierter Affe erledigen könnte. Bringen Sie Ihren Computer dazu, die langweilige Arbeit zu machen!
Release

Practical Computer Vision with SimpleCV

Author: Kurt Demaagd,Anthony Oliver,Nathan Oostendorp,Katherine Scott

Publisher: "O'Reilly Media, Inc."

ISBN: 1449320368

Category: Computers

Page: 240

View: 3853

Learn how to build your own computer vision (CV) applications quickly and easily with SimpleCV, an open source framework written in Python. Through examples of real-world applications, this hands-on guide introduces you to basic CV techniques for collecting, processing, and analyzing streaming digital images. You’ll then learn how to apply these methods with SimpleCV, using sample Python code. All you need to get started is a Windows, Mac, or Linux system, and a willingness to put CV to work in a variety of ways. Programming experience is optional. Capture images from several sources, including webcams, smartphones, and Kinect Filter image input so your application processes only necessary information Manipulate images by performing basic arithmetic on pixel values Use feature detection techniques to focus on interesting parts of an image Work with several features in a single image, using the NumPy and SciPy Python libraries Learn about optical flow to identify objects that change between two image frames Use SimpleCV’s command line and code editor to run examples and test techniques
Release

Einführung in Machine Learning mit Python

Praxiswissen Data Science

Author: Andreas C. Müller,Sarah Guido

Publisher: O'Reilly

ISBN: 3960101120

Category: Computers

Page: 378

View: 4852

Machine Learning ist zu einem wichtigen Bestandteil vieler kommerzieller Anwendungen und Forschungsprojekte geworden, von der medizinischen Diagnostik bis hin zur Suche nach Freunden in sozialen Netzwerken. Um Machine-Learning-Anwendungen zu entwickeln, braucht es keine großen Expertenteams: Wenn Sie Python-Grundkenntnisse mitbringen, zeigt Ihnen dieses Praxisbuch, wie Sie Ihre eigenen Machine-Learning-Lösungen erstellen. Mit Python und der scikit-learn-Bibliothek erarbeiten Sie sich alle Schritte, die für eine erfolgreiche Machine-Learning-Anwendung notwendig sind. Die Autoren Andreas Müller und Sarah Guido konzentrieren sich bei der Verwendung von Machine-Learning-Algorithmen auf die praktischen Aspekte statt auf die Mathematik dahinter. Wenn Sie zusätzlich mit den Bibliotheken NumPy und matplotlib vertraut sind, hilft Ihnen dies, noch mehr aus diesem Tutorial herauszuholen. Das Buch zeigt Ihnen: - grundlegende Konzepte und Anwendungen von Machine Learning - Vor- und Nachteile weit verbreiteter maschineller Lernalgorithmen - wie sich die von Machine Learning verarbeiteten Daten repräsentieren lassen und auf welche Aspekte der Daten Sie sich konzentrieren sollten - fortgeschrittene Methoden zur Auswertung von Modellen und zum Optimieren von Parametern - das Konzept von Pipelines, mit denen Modelle verkettet und Arbeitsabläufe gekapselt werden - Arbeitsmethoden für Textdaten, insbesondere textspezifische Verarbeitungstechniken - Möglichkeiten zur Verbesserung Ihrer Fähigkeiten in den Bereichen Machine Learning und Data Science Dieses Buch ist eine fantastische, super praktische Informationsquelle für jeden, der mit Machine Learning in Python starten möchte – ich wünschte nur, es hätte schon existiert, als ich mit scikit-learn anfing! Hanna Wallach, Senior Researcher, Microsoft Research
Release

Menschheit 2.0

Die Singularität naht

Author: Ray Kurzweil

Publisher: Lola Books

ISBN: 3944203135

Category: Technology & Engineering

Page: 672

View: 9066

Das Jahr 2045 markiert einen historischen Meilenstein: Es ist das Jahr, in dem der Mensch seine biologischen Begrenzungen mithilfe der Technik überwinden wird. Diese als technologische Singularität bekannt gewordene Revolution wird die Menschheit für immer verändern. Googles Chefingenieur Ray Kurzweil, dessen wahnwitzigen Visionen in den vergangenen Jahrzehnten immer wieder genau ins Schwarze trafen, zeichnet in diesem Klassiker des Transhumanismus mit beispielloser Detailwut eine bunt schillernde Momentaufnahme der technischen Evolution und legt dar, weshalb diese so bald kein Ende finden, sondern im Gegenteil immer weiter an Dynamik gewinnen wird. Daraus ergibt sich eine ebenso faszinierende wie schockierende Vision für die Zukunft der Menschheit.
Release

Maschinelles Lernen

Author: Ethem Alpaydin

Publisher: De Gruyter Oldenbourg

ISBN: 9783486581140

Category: Machine learning

Page: 440

View: 8760

Maschinelles Lernen heißt, Computer so zu programmieren, dass ein bestimmtes Leistungskriterium anhand von Beispieldaten und Erfahrungswerten aus der Vergangenheit optimiert wird. Das vorliegende Buch diskutiert diverse Methoden, die ihre Grundlagen in verschiedenen Themenfeldern haben: Statistik, Mustererkennung, neuronale Netze, Künstliche Intelligenz, Signalverarbeitung, Steuerung und Data Mining. In der Vergangenheit verfolgten Forscher verschiedene Wege mit unterschiedlichen Schwerpunkten. Das Anliegen dieses Buches ist es, all diese unterschiedlichen Ansätze zu kombinieren, um eine allumfassende Behandlung der Probleme und ihrer vorgeschlagenen Lösungen zu geben.
Release

OpenCV 4 for Secret Agents

Use OpenCV 4 in secret projects to classify cats, reveal the unseen, and react to rogue drivers, 2nd Edition

Author: Joseph Howse

Publisher: Packt Publishing Ltd

ISBN: 1789344581

Category: Computers

Page: 336

View: 3057

Turn futuristic ideas about computer vision and machine learning into demonstrations that are both functional and entertaining Key Features Build OpenCV 4 apps with Python 2 and 3 on desktops and Raspberry Pi, Java on Android, and C# in Unity Detect, classify, recognize, and measure real-world objects in real-time Work with images from diverse sources, including the web, research datasets, and various cameras Book Description OpenCV 4 is a collection of image processing functions and computer vision algorithms. It is open source, supports many programming languages and platforms, and is fast enough for many real-time applications. With this handy library, you’ll be able to build a variety of impressive gadgets. OpenCV 4 for Secret Agents features a broad selection of projects based on computer vision, machine learning, and several application frameworks. To enable you to build apps for diverse desktop systems and Raspberry Pi, the book supports multiple Python versions, from 2.7 to 3.7. For Android app development, the book also supports Java in Android Studio, and C# in the Unity game engine. Taking inspiration from the world of James Bond, this book will add a touch of adventure and computer vision to your daily routine. You’ll be able to protect your home and car with intelligent camera systems that analyze obstacles, people, and even cats. In addition to this, you’ll also learn how to train a search engine to praise or criticize the images that it finds, and build a mobile app that speaks to you and responds to your body language. By the end of this book, you will be equipped with the knowledge you need to advance your skills as an app developer and a computer vision specialist. What you will learn Detect motion and recognize gestures to control a smartphone game Detect car headlights and estimate their distance Detect and recognize human and cat faces to trigger an alarm Amplify motion in a real-time video to show heartbeats and breaths Make a physics simulation that detects shapes in a real-world drawing Build OpenCV 4 projects in Python 3 for desktops and Raspberry Pi Develop OpenCV 4 Android applications in Android Studio and Unity Who this book is for If you are an experienced software developer who is new to computer vision or machine learning, and wants to study these topics through creative projects, then this book is for you. The book will also help existing OpenCV users who want upgrade their projects to OpenCV 4 and new versions of other libraries, languages, tools, and operating systems. General familiarity with object-oriented programming, application development, and usage of operating systems (OS), developer tools, and the command line is required.
Release

Grundlagen der Computerlinguistik

Mensch-Maschine-Kommunikation in natürlicher Sprache

Author: Roland R. Hausser

Publisher: Springer-Verlag

ISBN: 3642573061

Category: Computers

Page: 572

View: 9960

Die zentrale Aufgabe einer zukunftsorientierten Computerlinguistik ist die Entwicklung kognitiver Maschinen, mit denen Menschen in ihrer jeweiligen Sprache frei reden können. Langfristig umfaßt diese Zielsetzung eine funktional ausgerichtete Theoriebildung, eine objektive Verifikationsmethode und eine Fülle praktischer Anwendungen. Für die natürlichsprachliche Kommunikation wird nicht nur Sprachverarbeitung, sondern auch nichtsprachliche Wahrnehmung und Handlung benötigt. Deshalb ist der Inhalt dieses Lehrbuchs als Sprachtheorie für die Konstruktion sprechender Roboter organisiert. Sein zentrales Thema ist die Kommunikationsmechanik natürlicher Sprachen - beim Sprecher und beim Hörer. Der Inhalt ist in folgende vier Teile mit je sechs Kapiteln gegliedert: Sprachtheorie; Formale Grammatik; Morphologie und Syntax; Semantik und Pragmatik. Insgesamt 772 Übungsaufgaben dienen der Verständniskontrolle und -vertiefung.
Release

MPI - Eine Einführung

Portable parallele Programmierung mit dem Message-Passing Interface

Author: William Gropp,Ewing Lusk,Anthony Skjellum

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3486841009

Category: Computers

Page: 387

View: 3526

Message Passing Interface (MPI) ist ein Protokoll, das parallel Berechnungen auf verteilten, heterogenen, lose-gekoppelten Computersystemen ermöglicht. Das Buch beginnt mit einem kurzen Überblick über parallele Entwicklungsumgebungen und führt in die grundlegenden Konzepte ein. Anschließend wird gezeigt, wie anhand von graphischen Analysewerkzeugen die Leistungsfähigkeit eines Programms getestet werden kann. Die grundlegenden Fähigkeiten von MPI werden mittels des Poisson-Problems erörtert und gezeigt, wie MPI zur Umsetzung von virtuellen Topologien genutzt werden kann. Zur Illustration von anspruchsvolleren Funktionen des Message-Passing in MPI wird auf das N-Körper-Problem eingegangen. Nach einem Vergleich von MPI-Implementierungen mit anderen Systemen wird das Buch durch Sprachfestlegungen für C-, C++ und Fortran-Versionen aller MPI-Routinen abgerundet.
Release

Algorithmen - Eine Einführung

Author: Thomas H. Cormen,Charles E. Leiserson,Ronald Rivest,Clifford Stein

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110522012

Category: Computers

Page: 1339

View: 5226

Der "Cormen" bietet eine umfassende und vielseitige Einführung in das moderne Studium von Algorithmen. Es stellt viele Algorithmen Schritt für Schritt vor, behandelt sie detailliert und macht deren Entwurf und deren Analyse allen Leserschichten zugänglich. Sorgfältige Erklärungen zur notwendigen Mathematik helfen, die Analyse der Algorithmen zu verstehen. Den Autoren ist es dabei geglückt, Erklärungen elementar zu halten, ohne auf Tiefe oder mathematische Exaktheit zu verzichten. Jedes der weitgehend eigenständig gestalteten Kapitel stellt einen Algorithmus, eine Entwurfstechnik, ein Anwendungsgebiet oder ein verwandtes Thema vor. Algorithmen werden beschrieben und in Pseudocode entworfen, der für jeden lesbar sein sollte, der schon selbst ein wenig programmiert hat. Zahlreiche Abbildungen verdeutlichen, wie die Algorithmen arbeiten. Ebenfalls angesprochen werden Belange der Implementierung und andere technische Fragen, wobei, da Effizienz als Entwurfskriterium betont wird, die Ausführungen eine sorgfältige Analyse der Laufzeiten der Programme mit ein schließen. Über 1000 Übungen und Problemstellungen und ein umfangreiches Quellen- und Literaturverzeichnis komplettieren das Lehrbuch, dass durch das ganze Studium, aber auch noch danach als mathematisches Nachschlagewerk oder als technisches Handbuch nützlich ist. Für die dritte Auflage wurde das gesamte Buch aktualisiert. Die Änderungen sind vielfältig und umfassen insbesondere neue Kapitel, überarbeiteten Pseudocode, didaktische Verbesserungen und einen lebhafteren Schreibstil. So wurden etwa - neue Kapitel zu van-Emde-Boas-Bäume und mehrfädigen (engl.: multithreaded) Algorithmen aufgenommen, - das Kapitel zu Rekursionsgleichungen überarbeitet, sodass es nunmehr die Teile-und-Beherrsche-Methode besser abdeckt, - die Betrachtungen zu dynamischer Programmierung und Greedy-Algorithmen überarbeitet; Memoisation und der Begriff des Teilproblem-Graphen als eine Möglichkeit, die Laufzeit eines auf dynamischer Programmierung beruhender Algorithmus zu verstehen, werden eingeführt. - 100 neue Übungsaufgaben und 28 neue Problemstellungen ergänzt. Umfangreiches Dozentenmaterial (auf englisch) ist über die Website des US-Verlags verfügbar.
Release