Physics of Fully Ionized Gases

Second Revised Edition

Author: Lyman Spitzer

Publisher: Courier Corporation

ISBN: 0486151581

Category: Science

Page: 192

View: 2577

An introductory course in theoretical physics is the sole prerequisite for this general but simple introduction to the fields of plasma and fusion research. 1962 edition.
Release

Physics of Fully Ionized Gases

Author: Lyman Spitzer

Publisher: Courier Corporation

ISBN: 0486449823

Category: Science

Page: 170

View: 8360

This classic graduate-level volume was the first general but simple introduction to the fields of plasma and fusion research. Since its original publication in 1956, it has served as a valuable reference. Designed for those who have had an introductory course in theoretical physics but are otherwise unacquainted with the detailed kinetic theory of gases, it chiefly emphasizes macroscopic equations and their consequences. The contents are restricted to topics offering a theoretical understanding of plasma and fusion research. Subjects include the motion of a particle, macroscopic behavior of a plasma, waves in a plasma, equilibria and their stability, and encounters between changed particles. A helpful appendix offers background on the Boltzmann equation. Author Lyman Spitzer, Jr., was the first to propose the idea of placing a large telescope in space, and he was the driving force behind the development of the Hubble Space Telescope. Founder and director of Princeton's Plasma Physics Laboratory, a pioneering program in controlled thermonuclear research, Spitzer taught and inspired a generation of plasma physicists.
Release

Plasma Physics

Author: James E. Drummond

Publisher: Courier Corporation

ISBN: 0486320588

Category: Science

Page: 400

View: 1320

This edited collection of papers by pioneering experts was a standard text throughout the 1960s and 70s. A timeless introduction to foundations of plasma physics and a valuable source of historic context. 1961 edition.
Release

Engineering Magnetohydrodynamics

Author: George W. Sutton ,Arthur Sherman

Publisher: Courier Dover Publications

ISBN: 0486450325

Category: Science

Page: 576

View: 3968

Suitable for advanced undergraduates and graduate students in engineering, this text introduces the concepts of plasma physics and magnetohydrodynamics from a physical viewpoint. The first section of the three-part treatment deals mainly with the properties of ionized gases in magnetic and electric fields, essentially following the microscopic viewpoint. An introduction surveys the concepts of ionized gases and plasmas, together with a variety of magnetohydrodynamic regimes. A review of electromagnetic field theory follows, including motion of an individual charged particle and derivations of drift motions and adiabatic invariants. Additional topics include kinetic theory, derivation of electrical conductivity, development of statistical mechanics, radiation from plasma, and plasma wave motion. Part II addresses the macroscopic motion of electrically conducting compressible fluids: magnetohydrodynamic approximations; description of macroscopic fluid motions; magnetohydrodynamic channel flow; methods of estimating channel-flow behavior; and treatment of magnetohydrodynamic boundary layers. Part III draws upon the material developed in previous sections to explore applications of magnetohydrodynamics. The text concludes with a series of problems that reinforce the teachings of all three parts.
Release

Computational Plasma Physics

With Applications To Fusion And Astrophysics

Author: Toshi Tajima

Publisher: CRC Press

ISBN: 0429970021

Category: Science

Page: 528

View: 561

The physics of plasmas is an extremely rich and complex subject as the variety of topics addressed in this book demonstrates. This richness and complexity demands new and powerful techniques for investigating plasma physics. An outgrowth from his graduate course teaching, now with corrections, Tajima's text provides not only a lucid introduction to computational plasma physics, but also offers the reader many examples of the way numerical modeling, properly handled, can provide valuable physical understanding of the nonlinear aspects so often encountered in both laboratory and astrophysical plasmas. Included here are computational methods for modern nonlinear physics as applied to hydrodynamic turbulence, solitons, fast reconnection of magnetic fields, anomalous transports, dynamics of the sun, and more. The text contains examples of problems now solved using computational techniques including those concerning finite-size particles, spectral techniques, implicit differencing, gyrokinetic approaches, and particle simulation.
Release

Plasma Physics and Fusion Energy

Author: Jeffrey P. Freidberg

Publisher: Cambridge University Press

ISBN: 1139462156

Category: Science

Page: N.A

View: 2957

There has been an increase in interest worldwide in fusion research over the last decade and a half due to the recognition that a large number of new, environmentally attractive, sustainable energy sources will be needed to meet ever increasing demand for electrical energy. Based on a series of course notes from graduate courses in plasma physics and fusion energy at MIT, the text begins with an overview of world energy needs, current methods of energy generation, and the potential role that fusion may play in the future. It covers energy issues such as the production of fusion power, power balance, the design of a simple fusion reactor and the basic plasma physics issues faced by the developers of fusion power. This book is suitable for graduate students and researchers working in applied physics and nuclear engineering. A large number of problems accumulated over two decades of teaching are included to aid understanding.
Release

Principles of Plasma Diagnostics

Author: I. H. Hutchinson

Publisher: Cambridge University Press

ISBN: 9780521675741

Category: Medical

Page: 460

View: 3201

This book provides a systematic introduction to the physics behind measurements on plasmas. It develops from first principles the concepts needed to plan, execute, and interpret plasma diagnostics. The book is therefore accessible to graduate students and professionals with little specific plasma physics background, but is also a valuable reference for seasoned plasma physicists. Most of the examples are taken from laboratory plasma research, but the focus on principles makes the treatment useful to all experimental and theoretical plasma physicists, including those interested in space and astrophysical applications. This second edition is thoroughly revised and updated, with new sections and chapters covering recent developments in the field. Specific areas of added coverage include neutral-beam-based diagnostics, flow measurement with mach probes, equilibrium of strongly shaped plasmas and fusion product diagnostics.
Release

Physics of Ionized Gases

Author: Boris M. Smirnov

Publisher: John Wiley & Sons

ISBN: 352761771X

Category: Science

Page: 398

View: 6540

A comprehensive textbook and reference for the study of the physics of ionized gases The intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces. In all cases, the emphasis is on a clear and unified understanding of the basic physics that underlies all plasma phenomena. Thus, there are chapters on plasma behavior from the viewpoint of atomic and molecular physics, as well as on the macroscopic phenomena involved in physical kinetics of plasmas and the transport of radiation and of charged particles within plasmas. With this grounding in the fundamental physics of plasmas, the notoriously difficult subjects of nonlinear phenomena and of instabilities in plasmas are then treated with comprehensive clarity.
Release

The Physics Of Laser Plasma Interactions

Author: William Kruer

Publisher: Westview Press

ISBN: 9780813340838

Category: Science

Page: 202

View: 2079

Based on a graduate course in plasma physics taught at University of California, Davis, this classic book provides a concise overview and a physically-motivated treatment of the major plasma processes which determine the interaction of intense light waves with plasmas. It also includes a discussion of basic plasma concepts, plasma simulation using particle codes, and laser plasma experiments. This is the most elementary book currently available that successfully blends theory, simulation, and experiment, and presents a clear exposition of the major physical processes involved in laser-plasma interactions. This was also the first book on the topic by anyone involved in the United States Laser Fusion Program. Dr. Kruer has more than 30 years of active participation in this field.
Release

The Physics of Inertial Fusion

BeamPlasma Interaction, Hydrodynamics, Hot Dense Matter

Author: Stefano Atzeni,Jürgen Meyer-ter-Vehn

Publisher: OUP Oxford

ISBN: 9780191524059

Category: Science

Page: 480

View: 8407

This book is on inertial confinement fusion, an alternative way to produce electrical power from hydrogen fuel by using powerful lasers or particle beams. It involves the compression of tiny amounts (micrograms) of fuel to thousand times solid density and pressures otherwise existing only in the centre of stars. Thanks to advances in laser technology, it is now possible to produce such extreme states of matter in the laboratory. Recent developments have boosted laser intensities again with new possibilities for laser particle accelerators, laser nuclear physics, and fast ignition of fusion targets. This is a reference book for those working on beam plasma physics, be it in the context of fundamental research or applications to fusion energy or novel ultra-bright laser sources. The book combines quite different areas of physics: beam target interaction, dense plasmas, hydrodynamic implosion and instabilities, radiative energy transfer as well as fusion reactions. Particular attention is given to simple and useful modelling, including dimensional analysis and similarity solutions. Both authors have worked in this field for more than 20 years. They want to address in particular those teaching this topic to students and all those interested in understanding the technical basis.
Release

Transport Processes in Multicomponent Plasma

Author: V.M. Zhdanov

Publisher: CRC Press

ISBN: 9780415279208

Category: Science

Page: 296

View: 8251

Transport Processes in Multicomponent Plasma is a revised and updated version of the original Russian edition. The book examines transport phenomena in multicomponent plasma and looks at important issues such as partially ionized gases, molecular gas mixtures and methods of calculating kinetic coefficients. It makes a logical progression from simpler to more general problems, and the results presented in the book may be used to calculate the kinetic coefficients of plasma in electric and magnetic fields. The author concludes by describing several practical applications such as electrical conductivity and Hall's effect in MHD-generators. Transport Processes in Multicomponent Plasma will be of interest to advanced students and specialized researchers working in various aspects of plasma physics, including both cold plasmas for industrial research and high temperature plasmas in fusion.
Release

Introduction to Plasma Physics

Author: R.J Goldston,P.H Rutherford

Publisher: CRC Press

ISBN: 9781439822074

Category: Science

Page: 510

View: 8533

Introduction to Plasma Physics is the standard text for an introductory lecture course on plasma physics. The text’s six sections lead readers systematically and comprehensively through the fundamentals of modern plasma physics. Sections on single-particle motion, plasmas as fluids, and collisional processes in plasmas lay the groundwork for a thorough understanding of the subject. The authors take care to place the material in its historical context for a rich understanding of the ideas presented. They also emphasize the importance of medical imaging in radiotherapy, providing a logical link to more advanced works in the area. The text includes problems, tables, and illustrations as well as a thorough index and a complete list of references.
Release

Introduction to Plasma Physics and Controlled Fusion

Author: Francis Chen

Publisher: Springer

ISBN: 3319223097

Category: Science

Page: 490

View: 7154

This complete introduction to plasma physics and controlled fusion by one of the pioneering scientists in this expanding field offers both a simple and intuitive discussion of the basic concepts of this subject and an insight into the challenging problems of current research. In a wholly lucid manner the work covers single-particle motions, fluid equations for plasmas, wave motions, diffusion and resistivity, Landau damping, plasma instabilities and nonlinear problems. For students, this outstanding text offers a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly. This revised edition contains new material on kinetic effects, including Bernstein waves and the plasma dispersion function, and on nonlinear wave equations and solitons. For the third edition, updates was made throughout each existing chapter, and two new chapters were added; Ch 9 on “Special Plasmas” and Ch 10 on Plasma Applications (including Atmospheric Plasmas).
Release

An Indispensable Truth

How Fusion Power Can Save the Planet

Author: Francis Chen

Publisher: Springer Science & Business Media

ISBN: 9781441978202

Category: Science

Page: 433

View: 3954

Recent books have raised the public consciousness about the dangers of global warming and climate change. This book is intended to convey the message that there is a solution. The solution is the rapid development of hydrogen fusion energy. This energy source is inexhaustible and, although achieving fusion energy is difficult, the progress made in the past two decades has been remarkable. The physics issues are now understood well enough that serious engineering can begin.The book starts with a summary of climate change and energy sources, trying to give a concise, clear, impartial picture of the facts, separate from conjecture and sensationalism. Controlled fusion -- the difficult problems and ingenious solutions -- is then explained using many new concepts.The bottom line -- what has yet to be done, how long it will take, and how much it will cost -- may surprise you. Francis F. Chen's career in plasma has extended over five decades. His textbook Introduction to Plasma Physics has been used worldwide continuously since 1974. He is the only physicist who has published significantly in both experiment and theory and on both magnetic fusion and laser fusion. As an outdoorsman and runner, he is deeply concerned about the environment. Currently he enjoys bird photography and is a member of the Audubon Society.
Release

Kinetic Processes in Gases and Plasmas

Author: A Hochstim

Publisher: Elsevier

ISBN: 0323149111

Category: Science

Page: 472

View: 2713

Kinetic Processes in Gases and Plasmas provides a survey of studies on transport and chemical kinetic processes in high temperature gases and plasmas. The book is concerned with conditions produced by the interaction of an object with the atmosphere at hypersonic velocities. The text also provides a foundation for the flow field equations which include chemical reactions and other transport processes, and to present in some detail the microscopic considerations underlying these calculations. Chapters are devoted to the discussion of topics such as the molecular theory of transport equations; transport processes in ionized gases; and inelastic energy transfer processes and chemical kinetics. Aerospace engineers, physicists, chemists, and astrophysicists will find the book a good reference material.
Release

Gaseous Electronics and Gas Lasers

Author: Blake E. Cherrington

Publisher: Elsevier

ISBN: 1483278964

Category: Science

Page: 282

View: 6736

Gaseous Electronics and Gas Lasers deals with the fundamental principles and methods of analysis of weakly ionized gas discharges and gas lasers. The emphasis is on processes occurring in gas discharges and the analytical methods used to calculate important process rates. Detailed analyses of a variety of gas discharges are presented using atomic, ionic, and gas lasers as primary illustrations. Comprised of 12 chapters, this book begins with some initial categorization of gas discharge species and an overview of their interactions. The discussion then turns to an elementary theory of a gas discharge; inelastic collisions; distribution functions and the Boltzmann equation; and transport coefficients. Subsequent chapters focus on the fluid equations; electron-density decay processes; excited species; atomic neutral gas lasers; molecular gas lasers; and ion lasers. The important electron loss processes that determine the behavior of a plasma when the source and loss terms balance are also examined. This monograph will be of value to graduate students, practitioners, and researchers in the fields of physics and engineering, as well as to professionals interested in working with weakly ionized discharges.
Release

Generalized Boltzmann Physical Kinetics

Author: Boris V. Alexeev

Publisher: Elsevier

ISBN: 9780080478012

Category: Mathematics

Page: 376

View: 8855

The most important result obtained by Prof. B. Alexeev and reflected in the book is connected with new theory of transport processes in gases, plasma and liquids. It was shown by Prof. B. Alexeev that well-known Boltzmann equation, which is the basement of the classical kinetic theory, is wrong in the definite sense. Namely in the Boltzmann equation should be introduced the additional terms which generally speaking are of the same order of value as classical ones. It leads to dramatic changing in transport theory. The coincidence of experimental and theoretical data became much better. Particularly it leads to the strict theory of turbulence and possibility to calculate the turbulent flows from the first principles of physics. · Boltzmann equation (BE) is valid only for particles, which can be considered as material points, generalized Boltzmann equation (GBE) removes this restriction. · GBE contains additional terms in comparison with BE, which cannot be omitted · GBE leads to strict theory of turbulence · GBE gives all micro-scale turbulent fluctuations in tabulated closed analytical form for all flows · GBE leads to generalization of electro-dynamic Maxwell equations · GBE gives new generalized hydrodynamic equations (GHE) more effective than classic Navier-Stokes equations · GBE can be applied for description of flows for intermediate diapason of Knudsen numbers · Asymptotical solutions of GBE remove contradictions in the theory of Landau damping in plasma
Release

Kinetic Theory of Plasma Waves

Homogeneous Plasmas

Author: Marco Brambilla

Publisher: Oxford University Press

ISBN: 9780198559566

Category: Science

Page: 644

View: 5906

The book deals with the propagation and absorption of high frequency waves in plasmas (hot, fully ionized gases). Research in this field is very active in controlled fusion research, i.e. the quest for energy from nuclear reactions similar to those going on within the sun, and in astrophysics, i.e. the study of space plasmas in the earth ionosphere, stars, and galaxies. The text collects in a structured and self-contained way the basic knowledge on the broad and varied behaviour of plasma waves, adopting the microscopic kinetic description of the plasma as unifying principle. The internal coherence of the theory is explicity stressed, and very interesting physical phenomena peculiar to plasmas, such as collisionless damping of waves, the development of stochasticity in the interactions of charged particles with electromagnetic waves, and nonlinear interactions between waves, are discussed in detail. The most common and useful approximations used in solving practical problems are derived as special cases from the more general kinetic approach, thereby clarifying their meaning and domain of applicability. This exposition should be useful to plasma physicists both as an introduction and a reference to this field of research. Because of its multi-disciplinary aspects it might also be of interest to people specializing in kinetic theory, classical electromagnetism, or classical mechanics, as a nontrivial example of application of the methods of these fields to theunconventional plasma medium.
Release

Fundamentals of Ionized Gases

Basic Topics in Plasma Physics

Author: Boris M. Smirnov

Publisher: John Wiley & Sons

ISBN: 3527637117

Category: Science

Page: 450

View: 1125

A comprehensive and readily accessible work for studying the physics of ionized gases, based on "Physics of Ionized Gases". The focus remains on fundamentals rather than on the details required for interesting but difficult applications, such as magnetic confinement fusion, or the phenomena that occur with extremely high-intensity short-pulse lasers. However, this new work benefits from much rearranging of the subject matter within each topic, resulting in a more coherent structure. There are also some significant additions, many of which relate to clusters, while other enlarged sections include plasmas in the atmosphere and their applications. In each case, the emphasis is on a clear and unified understanding of the basic physics that underlies all plasma phenomena. Thus, there are chapters on plasma behavior from the viewpoint of atomic and molecular physics, as well as on the macroscopic phenomena involved in physical kinetics of plasmas and the transport of radiation and of charged particles within plasmas. With this grounding in the fundamental physics of plasmas, the notoriously difficult subjects of nonlinear phenomena and of instabilities in plasmas can then be treated with comprehensive clarity. The work is rounded off with appendices containing information and data of great importance and relevance that are not easily found in other books. Valuable reading for graduate and PhD physics students, and a reference for researchers in low-temperature ionized gases-plasma processing, edge region fusion plasma physics, and atmospheric plasmas.
Release