Optimal Control and Geometry: Integrable Systems

Author: Velimir Jurdjevic

Publisher: Cambridge University Press

ISBN: 1107113881

Category: Mathematics

Page: 400

View: 4998

The synthesis of symplectic geometry, the calculus of variations and control theory offered in this book provides a crucial foundation for the understanding of many problems in applied mathematics. Focusing on the theory of integrable systems, this book introduces a class of optimal control problems on Lie groups, whose Hamiltonians, obtained through the Maximum Principle of optimality, shed new light on the theory of integrable systems. These Hamiltonians provide an original and unified account of the existing theory of integrable systems. The book particularly explains much of the mystery surrounding the Kepler problem, the Jacobi problem and the Kovalevskaya Top. It also reveals the ubiquitous presence of elastic curves in integrable systems up to the soliton solutions of the non-linear Schroedinger's equation. Containing a useful blend of theory and applications, this is an indispensable guide for graduates and researchers in many fields, from mathematical physics to space control.
Release

Geometry and Complexity Theory

Author: J. M. Landsberg

Publisher: Cambridge University Press

ISBN: 110819141X

Category: Computers

Page: N.A

View: 9374

Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.
Release

Geometric Control Theory

Author: Velimir Jurdjevic

Publisher: Cambridge University Press

ISBN: 9780521495028

Category: Mathematics

Page: 492

View: 6949

A modern version of the calculus of variations, encompassing geometric mechanics, differential geometry, and optimal control.
Release

Special Functions and Orthogonal Polynomials

Author: Richard Beals,Roderick Wong

Publisher: Cambridge University Press

ISBN: 1107106982

Category: Mathematics

Page: 500

View: 1585

A comprehensive graduate-level introduction to classical and contemporary aspects of special functions.
Release

Integrable Hamiltonian Systems on Complex Lie Groups

Author: Velimir Jurdjevic

Publisher: American Mathematical Soc.

ISBN: 0821837648

Category: Mathematics

Page: 133

View: 794

This paper is a study of the elastic problems on simply connected manifolds $M_n$ whose orthonormal frame bundle is a Lie group $G$. Such manifolds, called the space forms in the literature on differential geometry, are classified and consist of the Euclidean spaces $\mathbb{E}^n$, the hyperboloids $\mathbb{H}^n$, and the spheres $S^n$, with the corresponding orthonormal frame bundles equal to the Euclidean group of motions $\mathbb{E}^n\rtimes SO_n(\mathbb{R})$, the rotation group $SO_{n+1}(\mathbb{R})$, and the Lorentz group $SO(1,n)$. The manifolds $M_n$ are treated as the symmetric spaces $G/K$ with $K$ isomorphic with $SO_n(R)$. Then the Lie algebra $\mathfrak{g}$ of $G$ admits a Cartan decomposition $\mathfrak{g}=\mathfrak{p}+\mathfrak{k}$ with $\mathfrak{k}$ equal to the Lie algebra of $K$ and $\mathfrak{p}$ equal to the orthogonal comlement $\mathfrak{k}$ relative to the trace form. The elastic problems on $G/K$ concern the solutions $g(t)$ of a left invariant differential systems on $G$ $$\frac{dg}{dt}(t)=g(t)(A_0+U(t)))$$ that minimize the expression $\frac{1}{2}\int_0^T (U(t),U(t))\,dt$ subject to the given boundary conditions $g(0)=g_0$, $g(T)=g_1$, over all locally bounded and measurable $\mathfrak{k}$ valued curves $U(t)$ relative to a positive definite quadratic form $(\,, \,)$ where $A_0$ is a fixed matrix in $\mathfrak{p}$. These variational problems fall in two classes, the Euler-Griffiths problems and the problems of Kirchhoff. The Euler-Griffiths elastic problems consist of minimizing the integral $$\tfrac{1}{2}\int_0^T\kappa^2(s)\,ds$$ with $\kappa (t)$ equal to the geodesic curvature of a curve $x(t)$ in the base manifold $M_n$ with $T$ equal to the Riemannian length of $x$. The curves $x(t)$ in this variational problem are subject to certain initial and terminal boundary conditions. The elastic problems of Kirchhoff is more general than the problems of Euler-Griffiths in the sense that the quadratic form $(\,, \,)$ that defines the functional to be minimized may be independent of the geometric invariants of the projected curves in the base manifold. It is only on two dimensional manifolds that these two problems coincide in which case the solutions curves can be viewed as the non-Euclidean versions of L. Euler elasticae introduced in 174. Each elastic problem defines the appropriate left-invariant Hamiltonian $\mathcal{H}$ on the dual $\mathfrak{g}^*$ of the Lie algebra of $G$ through the Maximum Principle of optimal control. The integral curves of the corresponding Hamiltonian vector field $\vec{\mathcal{H}}$ are called the extremal curves. The paper is essentially concerned with the extremal curves of the Hamiltonian systems associated with the elastic problems. This class of Hamiltonian systems reveals a remarkable fact that the Hamiltonian systems traditionally associated with the movements of the top are invariant subsystems of the Hamiltonian systems associated with the elastic problems. The paper is divided into two parts. The first part of the paper synthesizes ideas from optimal control theory, adapted to variational problems on the principal bundles of Riemannian spaces, and the symplectic geometry of the Lie algebra $\mathfrak{g},$ of $G$, or more precisely, the symplectic structure of the cotangent bundle $T^*G$ of $G$. The second part of the paper is devoted to the solutions of the complexified Hamiltonian equations induced by the elastic problems. The paper contains a detailed discussion of the algebraic preliminaries leading up to $so_n(\mathbb{C})$, a natural complex setting for the study of the left invariant Hamiltonians on real Lie groups $G$ for which $\mathfrak{g}$ is a real form for $so_n(\mathbb{C})$. It is shown that the Euler-Griffiths problem is completely integrable in any dimension with the solutions the holomorphic extensions of the ones obtained by earlier P. Griffiths. The solutions of the elastic problems of Kirchhoff are presented in complete generality on $SO_3(\mathbb{C})$ and there is a classification of the integrable cases on $so_4(\mathbb{C})$ based on the criteria of Kowalewski-Lyapunov in their study of the mechanical tops. Remarkably, the analysis yields essentially only two integrables cases analogous to the top of Lagrange and the top of Kowalewski. The paper ends with the solutions of the integrable complex Hamiltonian systems on the $SL_2(\mathbb{C})\times SL_2(\mathbb{C})$, the universal cover of $SO_4(\mathbb{C})$.
Release

Unsolved Problems in Mathematical Systems and Control Theory

Author: Vincent D. Blondel,Alexandre Megretski

Publisher: Princeton University Press

ISBN: 1400826152

Category: Mathematics

Page: 352

View: 7690

This book provides clear presentations of more than sixty important unsolved problems in mathematical systems and control theory. Each of the problems included here is proposed by a leading expert and set forth in an accessible manner. Covering a wide range of areas, the book will be an ideal reference for anyone interested in the latest developments in the field, including specialists in applied mathematics, engineering, and computer science. The book consists of ten parts representing various problem areas, and each chapter sets forth a different problem presented by a researcher in the particular area and in the same way: description of the problem, motivation and history, available results, and bibliography. It aims not only to encourage work on the included problems but also to suggest new ones and generate fresh research. The reader will be able to submit solutions for possible inclusion on an online version of the book to be updated quarterly on the Princeton University Press website, and thus also be able to access solutions, updated information, and partial solutions as they are developed.
Release

Nonholonomic Mechanics and Control

Author: A.M. Bloch

Publisher: Springer

ISBN: 1493930176

Category: Science

Page: 565

View: 5769

This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.
Release

Control and Nonlinearity

Author: Jean-Michel Coron

Publisher: American Mathematical Soc.

ISBN: 0821849182

Category: Commande non linéaire

Page: 426

View: 2668

This book presents methods to study the controllability and the stabilization of nonlinear control systems in finite and infinite dimensions. The emphasis is put on specific phenomena due to nonlinearities. In particular, many examples are given where nonlinearities turn out to be essential to get controllability or stabilization. Various methods are presented to study the controllability or to construct stabilizing feedback laws. The power of these methods is illustrated by numerous examples coming from such areas as celestial mechanics, fluid mechanics, and quantum mechanics. The book is addressed to graduate students in mathematics or control theory, and to mathematicians or engineers with an interest in nonlinear control systems governed by ordinary or partial differential equations.
Release

Introduction to Mechanics and Symmetry

A Basic Exposition of Classical Mechanical Systems

Author: J.E. Marsden,Tudor Ratiu

Publisher: Springer Science & Business Media

ISBN: 0387217924

Category: Science

Page: 586

View: 814

A development of the basic theory and applications of mechanics with an emphasis on the role of symmetry. The book includes numerous specific applications, making it beneficial to physicists and engineers. Specific examples and applications show how the theory works, backed by up-to-date techniques, all of which make the text accessible to a wide variety of readers, especially senior undergraduates and graduates in mathematics, physics and engineering. This second edition has been rewritten and updated for clarity throughout, with a major revamping and expansion of the exercises. Internet supplements containing additional material are also available.
Release

Mathematical Control Theory

An Introduction

Author: Jerzy Zabczyk

Publisher: Springer Science & Business Media

ISBN: 9780817647339

Category: Science

Page: 260

View: 3171

Mathematical Control Theory: An Introduction presents, in a mathematically precise manner, a unified introduction to deterministic control theory. In addition to classical concepts and ideas, the author covers the stabilization of nonlinear systems using topological methods, realization theory for nonlinear systems, impulsive control and positive systems, the control of rigid bodies, the stabilization of infinite dimensional systems, and the solution of minimum energy problems. "Covers a remarkable number of topics....The book presents a large amount of material very well, and its use is highly recommended." --Bulletin of the AMS
Release

Mathematical Control Theory

Author: John B. Baillieul,J.C. Willems

Publisher: Springer Science & Business Media

ISBN: 1461214165

Category: Mathematics

Page: 360

View: 5660

This volume on mathematical control theory contains high quality articles covering the broad range of this field. The internationally renowned authors provide an overview of many different aspects of control theory, offering a historical perspective while bringing the reader up to the very forefront of current research.
Release

The American Mathematical Monthly

The Official Journal of the Mathematical Association of America

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematicians

Page: N.A

View: 7985

Release

Encyclopedia of mathematical physics

Author: Sheung Tsun Tsou

Publisher: Academic Pr

ISBN: 9780125126601

Category: Science

Page: 3500

View: 5299

The Encyclopedia of Mathematical Physics provides a complete resource for researchers, students and lecturers with an interest in mathematical physics. It enables readers to access basic information on topics peripheral to their own areas, to provide a repository of the core information in the area that can be used to refresh the researcher's own memory banks, and aid teachers in directing students to entries relevant to their course-work. The Encyclopedia does contain information that has been distilled, organised and presented as a complete reference tool to the user and a landmark to the body of knowledge that has accumulated in this domain. It also is a stimulus for new researchers working in mathematical physics or in areas using the methods originated from work in mathematical physics by providing them with focused high quality background information. * First comprehensive interdisciplinary coverage * Mathematical Physics explained to stimulate new developments and foster new applications of its methods to other fields * Written by an international group of experts * Contains several undergraduate-level introductory articles to facilitate acquisition of new expertise * Thematic index and extensive cross-referencing to provide easy access and quick search functionality * Also available online with active linking.
Release

The Geometry of Infinite-Dimensional Groups

Author: Boris Khesin,Robert Wendt

Publisher: Springer Science & Business Media

ISBN: 3540772634

Category: Mathematics

Page: 304

View: 4149

This monograph gives an overview of various classes of infinite-dimensional Lie groups and their applications in Hamiltonian mechanics, fluid dynamics, integrable systems, gauge theory, and complex geometry. The text includes many exercises and open questions.
Release

Geometry of Feedback and Optimal Control

Author: B. Jakubczyk,Witold Respondek

Publisher: Courier Corporation

ISBN: 9780824790684

Category: Mathematics

Page: 564

View: 5192

Gathering the most important and promising results in subfields of nonlinear control theory - previously available only in journals - this comprehensive volume presents the state of the art in geometric methods, their applications in optimal control, and feedback transformations. Supplemented with over 1200 references, equations, and drawings, this readily accessible resource is excellent for pure and applied mathematicians, analysts, and applied geometers specializing in control theory, differential equations, calculus of variations, differential geometry, and singularity theory, and graduate-level students in these disciplines.
Release

Finite Element Procedures

Author: Klaus-Jürgen Bathe

Publisher: Klaus-Jurgen Bathe

ISBN: 9780979004902

Category: Engineering mathematics

Page: 1037

View: 2833

Release

Near the Horizon

An Invitation to Geometric Optics

Author: Henk W. Broer

Publisher: The Mathematical Association of America

ISBN: 0883851423

Category: Mathematics

Page: N.A

View: 2673

Near the Horizon starts out by considering several optical phenomena that can occur when the sun is near the horizon. One can sometimes see objects that are actually below the horizon. Sometimes there seems to be a dark strip in the middle of the solar disk. These are a result of the way that the atmosphere affects the geometry of light rays. Broer starts his book with the Fermat principle (rays of light take least-time paths) and deduces from it laws for refraction and reflection; by expressing these as conservation laws, he can handle both the case of inhomogeneous layers of air and the case of continuous variation in the refraction index. A surprising application is the brachistochrone problem, in which the path of fastest descent is determined by studying how a light ray would behave in a "flat earth" atmosphere whose refraction index is determined by the gravitational potential. This leads to a very interesting chapter on the cycloid and its properties. The final chapters move from the elementary theory to a more sophisticated version in which the Fermat Principle leads to a Riemannian metric whose geodesics are the paths of light rays. This gives us an optics which is geometric in a new sense, and serves as a nice demonstration of the physical applicability of Riemannian geometry. The book is written in a very personal and engaging style. Broer is passionate about the subject and its history, and his passion helps carry the reader along. The result is readable and charming.
Release