Numerical Methods for Evolutionary Differential Equations

Author: Uri M. Ascher

Publisher: SIAM

ISBN: 0898718910

Category: Evolution equations

Page: 395

View: 3156

Methods for the numerical simulation of dynamic mathematical models have been the focus of intensive research for well over 60 years, and the demand for better and more efficient methods has grown as the range of applications has increased. Mathematical models involving evolutionary partial differential equations (PDEs) as well as ordinary differential equations (ODEs) arise in diverse applications such as fluid flow, image processing and computer vision, physics-based animation, mechanical systems, relativity, earth sciences, and mathematical finance. This textbook develops, analyzes, and applies numerical methods for evolutionary, or time-dependent, differential problems. Both PDEs and ODEs are discussed from a unified viewpoint. The author emphasizes finite difference and finite volume methods, specifically their principled derivation, stability, accuracy, efficient implementation, and practical performance in various fields of science and engineering. Smooth and nonsmooth solutions for hyperbolic PDEs, parabolic-type PDEs, and initial value ODEs are treated, and a practical introduction to geometric integration methods is included as well. Audience: suitable for researchers and graduate students from a variety of fields including computer science, applied mathematics, physics, earth and ocean sciences, and various engineering disciplines. Researchers who simulate processes that are modeled by evolutionary differential equations will find material on the principles underlying the appropriate method to use and the pitfalls that accompany each method.
Release

Numerical Methods for Nonlinear Partial Differential Equations

Author: Sören Bartels

Publisher: Springer

ISBN: 3319137972

Category: Mathematics

Page: 393

View: 1484

The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
Release

Numerical Solution of Partial Differential Equations in Science and Engineering

Author: Leon Lapidus,George F. Pinder

Publisher: Wiley-Interscience

ISBN: N.A

Category: Mathematics

Page: 677

View: 3935

"This book was written to provide a text for graduate and undergraduate students who took our courses in numerical methods. It incorporates the essential elements of all the numerical methods currently used extensively in the solution of partial differential equations encountered regularly in science and engineering. Because our courses were typically populated by students from varied backgrounds and with diverse interests, we attempted to eliminate jargon or nomenclature that would render the work unintelligible to any student. Moreover, in response to student needs, we incorporated not only classical (and not so classical) finite-difference methods but also finite-element, collocation, and boundary-element procedures. After an introduction to the various numerical schemes, each equation type--parabolic, elliptic, and hyperbolic--is allocated a separate chapter. Within each of these chapters the material is presented by numerical method. Thus one can read the book either by equation-type or numerical approach."--Preface, page [v].
Release

Numerical Methods Using Matlab

Author: John H. Mathews,Kurtis K. Fink

Publisher: N.A

ISBN: 9781408264188

Category:

Page: N.A

View: 4433

This package consists of the textbook plus MATLAB & Simulink Student Version 2010a For undergraduate Introduction to Numerical Analysis courses in mathematics, science, and engineering departments. This book provides a fundamental introduction to numerical analysis for undergraduate students in the areas of mathematics, computer science, physical sciences, and engineering. Knowledge of calculus is assumed.
Release

Numerical Methods for Conservation Laws

From Analysis to Algorithms

Author: Jan S. Hesthaven

Publisher: SIAM

ISBN: 1611975107

Category: Science

Page: 570

View: 5365

Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.
Release

Finite Difference Methods for Ordinary and Partial Differential Equations

Steady-State and Time-Dependent Problems

Author: Randall J. LeVeque

Publisher: SIAM

ISBN: 9780898717839

Category: Differential equations

Page: 339

View: 9853

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Release

Introduction to Computational Mathematics

Second Edition

Author: Xin-She Yang

Publisher: World Scientific Publishing Company

ISBN: 9814635804

Category: Mathematics

Page: 344

View: 7515

This unique book provides a comprehensive introduction to computational mathematics, which forms an essential part of contemporary numerical algorithms, scientific computing and optimization. It uses a theorem-free approach with just the right balance between mathematics and numerical algorithms. This edition covers all major topics in computational mathematics with a wide range of carefully selected numerical algorithms, ranging from the root-finding algorithm, numerical integration, numerical methods of partial differential equations, finite element methods, optimization algorithms, stochastic models, nonlinear curve-fitting to data modelling, bio-inspired algorithms and swarm intelligence. This book is especially suitable for both undergraduates and graduates in computational mathematics, numerical algorithms, scientific computing, mathematical programming, artificial intelligence and engineering optimization. Thus, it can be used as a textbook and/or reference book.
Release

Formulation and Numerical Solution of Quantum Control Problems

Author: Alfio Borzi,Gabriele Ciaramella,Martin Sprengel

Publisher: SIAM

ISBN: 1611974836

Category: Technology & Engineering

Page: 390

View: 1426

This book provides an introduction to representative nonrelativistic quantum control problems and their theoretical analysis and solution via modern computational techniques. The quantum theory framework is based on the SchrÓdinger picture, and the optimization theory, which focuses on functional spaces, is based on the Lagrange formalism. The computational techniques represent recent developments that have resulted from combining modern numerical techniques for quantum evolutionary equations with sophisticated optimization schemes. Both finite and infinite-dimensional models are discussed, including the three-level Lambda system arising in quantum optics, multispin systems in NMR, a charged particle in a well potential, Bose?Einstein condensates, multiparticle spin systems, and multiparticle models in the time-dependent density functional framework. This self-contained book covers the formulation, analysis, and numerical solution of quantum control problems and bridges scientific computing, optimal control and exact controllability, optimization with differential models, and the sciences and engineering that require quantum control methods. ÷÷
Release

A First Course on Numerical Methods

Author: Uri M. Ascher,Chen Greif

Publisher: SIAM

ISBN: 0898719984

Category: Mathematics

Page: 552

View: 3081

Offers students a practical knowledge of modern techniques in scientific computing.
Release

Numerical Methods for Scientists and Engineers

Author: Richard Hamming

Publisher: Courier Corporation

ISBN: 0486134822

Category: Mathematics

Page: 752

View: 1214

This inexpensive paperback edition of a groundbreaking text stresses frequency approach in coverage of algorithms, polynomial approximation, Fourier approximation, exponential approximation, and other topics. Revised and enlarged 2nd edition.
Release

Mathematical Analysis and Numerical Methods for Science and Technology

Volume 1 Physical Origins and Classical Methods

Author: Robert Dautray,Jacques-Louis Lions

Publisher: Springer Science & Business Media

ISBN: 3642615279

Category: Mathematics

Page: 720

View: 3588

These 6 volumes -- the result of a 10 year collaboration between the authors, both distinguished international figures -- compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. The advent of high-speed computers has made it possible to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way.
Release

Decomposition Methods for Differential Equations

Theory and Applications

Author: Juergen Geiser

Publisher: CRC Press

ISBN: 9781439810972

Category: Mathematics

Page: 304

View: 5202

Decomposition Methods for Differential Equations: Theory and Applications describes the analysis of numerical methods for evolution equations based on temporal and spatial decomposition methods. It covers real-life problems, the underlying decomposition and discretization, the stability and consistency analysis of the decomposition methods, and numerical results. The book focuses on the modeling of selected multi-physics problems, before introducing decomposition analysis. It presents time and space discretization, temporal decomposition, and the combination of time and spatial decomposition methods for parabolic and hyperbolic equations. The author then applies these methods to numerical problems, including test examples and real-world problems in physical and engineering applications. For the computational results, he uses various software tools, such as MATLAB®, R3T, WIAS-HiTNIHS, and OPERA-SPLITT. Exploring iterative operator-splitting methods, this book shows how to use higher-order discretization methods to solve differential equations. It discusses decomposition methods and their effectiveness, combination possibility with discretization methods, multi-scaling possibilities, and stability to initial and boundary values problems.
Release

Formulation and Numerical Solution of Quantum Control Problems

Author: Alfio Borzi,Gabriele Ciaramella,Martin Sprengel

Publisher: SIAM

ISBN: 1611974844

Category: Technology & Engineering

Page: 390

View: 9070

This book provides an introduction to representative nonrelativistic quantum control problems and their theoretical analysis and solution via modern computational techniques. The quantum theory framework is based on the SchrÓdinger picture, and the optimization theory, which focuses on functional spaces, is based on the Lagrange formalism. The computational techniques represent recent developments that have resulted from combining modern numerical techniques for quantum evolutionary equations with sophisticated optimization schemes. Both finite and infinite-dimensional models are discussed, including the three-level Lambda system arising in quantum optics, multispin systems in NMR, a charged particle in a well potential, Bose?Einstein condensates, multiparticle spin systems, and multiparticle models in the time-dependent density functional framework. This self-contained book covers the formulation, analysis, and numerical solution of quantum control problems and bridges scientific computing, optimal control and exact controllability, optimization with differential models, and the sciences and engineering that require quantum control methods.
Release

Mathematical and Numerical Methods for Partial Differential Equations

Applications for Engineering Sciences

Author: Joël Chaskalovic

Publisher: Springer

ISBN: 3319035630

Category: Mathematics

Page: 358

View: 8483

This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic.
Release

Mathematical analysis and numerical methods for science and technology

Author: Robert Dautray,Jacques-Louis Lions

Publisher: Springer

ISBN: 9783540502067

Category: Mathematics

Page: 485

View: 8156

These six volumes - the result of a ten year collaboration between the authors, two of France's leading scientists and both distinguished international figures - compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen " "Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form. The advent of large computers has in the meantime revolutionised methods of computation and made this gap in the literature intolerable: the objective of the present work is to fill just this gap. Many phenomena in physical mathematics may be modeled by a system of partial differential equations in distributed systems: a model here means a set of equations, which together with given boundary data and, if the phenomenon is evolving in time, initial data, defines the system. The advent of high-speed computers has made it possible for the first time to caluclate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way. Every fact of technical and industrial activity has been affected by these developments. Modeling by distributed systems now also supports work in many areas of physics (plasmas, new materials, astrophysics, geophysics), chemistry and mechanics and is finding increasing use in the life sciences. "Volumes 5 and 6" cover problems of Transport and Evolution.
Release

Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations

Author: Tarek Mathew

Publisher: Springer Science & Business Media

ISBN: 354077209X

Category: Mathematics

Page: 770

View: 5474

Domain decomposition methods are divide and conquer computational methods for the parallel solution of partial differential equations of elliptic or parabolic type. The methodology includes iterative algorithms, and techniques for non-matching grid discretizations and heterogeneous approximations. This book serves as a matrix oriented introduction to domain decomposition methodology. A wide range of topics are discussed include hybrid formulations, Schwarz, and many more.
Release

Spectral and High Order Methods for Partial Differential Equations

Selected papers from the ICOSAHOM '09 conference, June 22-26, Trondheim, Norway

Author: Jan S. Hesthaven,Einar M. Ronquist

Publisher: Springer Science & Business Media

ISBN: 9783642153372

Category: Mathematics

Page: 510

View: 3063

The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2009), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography.
Release

Numerical Methods for Delay Differential Equations

Author: Alfredo Bellen,Marino Zennaro

Publisher: Oxford University Press

ISBN: 0199671370

Category: Business & Economics

Page: 410

View: 6967

This unique book describes, analyses, and improves various approaches and techniques for the numerical solution of delay differential equations. It includes a list of available codes and also aids the reader in writing his or her own.
Release

A Student's Guide to Numerical Methods

Author: Ian H. Hutchinson

Publisher: Cambridge University Press

ISBN: 1107095670

Category: Computers

Page: 221

View: 6199

A plain language style, worked examples and exercises help students to understand the foundations of computational physics and engineering.
Release