Nonparametric Regression and Generalized Linear Models

A roughness penalty approach

Author: P.J. Green,Bernard. W. Silverman

Publisher: CRC Press

ISBN: 9780412300400

Category: Mathematics

Page: 184

View: 4007

In recent years, there has been a great deal of interest and activity in the general area of nonparametric smoothing in statistics. This monograph concentrates on the roughness penalty method and shows how this technique provides a unifying approach to a wide range of smoothing problems. The method allows parametric assumptions to be realized in regression problems, in those approached by generalized linear modelling, and in many other contexts. The emphasis throughout is methodological rather than theoretical, and it concentrates on statistical and computation issues. Real data examples are used to illustrate the various methods and to compare them with standard parametric approaches. Some publicly available software is also discussed. The mathematical treatment is self-contained and depends mainly on simple linear algebra and calculus. This monograph will be useful both as a reference work for research and applied statisticians and as a text for graduate students and other encountering the material for the first time.
Release

Extending the Linear Model with R

Generalized Linear, Mixed Effects and Nonparametric Regression Models

Author: Julian J. Faraway

Publisher: CRC Press

ISBN: 9780203492284

Category: Mathematics

Page: 312

View: 2866

Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway's critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those fo
Release

Extending the Linear Model with R

Generalized Linear, Mixed Effects and Nonparametric Regression Models

Author: Julian J. Faraway

Publisher: Chapman & Hall/CRC Texts in Statistical Science

ISBN: 9781498720960

Category: Analysis of variance

Page: 413

View: 5728

Start Analyzing a Wide Range of Problems Since the publication of the bestselling, highly recommended first edition, R has considerably expanded both in popularity and in the number of packages available. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Second Edition takes advantage of the greater functionality now available in R and substantially revises and adds several topics. New to the Second Edition Expanded coverage of binary and binomial responses, including proportion responses, quasibinomial and beta regression, and applied considerations regarding these models New sections on Poisson models with dispersion, zero inflated count models, linear discriminant analysis, and sandwich and robust estimation for generalized linear models (GLMs) Revised chapters on random effects and repeated measures that reflect changes in the lme4 package and show how to perform hypothesis testing for the models using other methods New chapter on the Bayesian analysis of mixed effect models that illustrates the use of STAN and presents the approximation method of INLA Revised chapter on generalized linear mixed models to reflect the much richer choice of fitting software now available Updated coverage of splines and confidence bands in the chapter on nonparametric regression New material on random forests for regression and classification Revamped R code throughout, particularly the many plots using the ggplot2 package Revised and expanded exercises with solutions now included Demonstrates the Interplay of Theory and Practice This textbook continues to cover a range of techniques that grow from the linear regression model. It presents three extensions to the linear framework: GLMs, mixed effect models, and nonparametric regression models. The book explains data analysis using real examples and includes all the R commands necessary to reproduce the analyses.
Release

Regression

Modelle, Methoden und Anwendungen

Author: Ludwig Fahrmeir,Thomas Kneib,Stefan Lang

Publisher: Springer-Verlag

ISBN: 3642018378

Category: Business & Economics

Page: 502

View: 1241

In dem Band beschreiben die Autoren erstmals klassische Regressionsansätze und moderne nicht- und semiparametrische Methoden in einer integrierten und anwendungsorientierten Form. Um Lesern die Analyse eigener Fragestellungen zu ermöglichen, demonstrieren sie die praktische Anwendung der Konzepte und Methoden anhand ausführlicher Fallstudien. Geeignet für Studierende der Statistik sowie für Wissenschaftler und Praktiker, zum Beispiel in den Wirtschafts- und Sozialwissenschaften, der Bioinformatik und -statistik, Ökonometrie und Epidemiologie.
Release

Multiple and Generalized Nonparametric Regression

Author: John Fox

Publisher: SAGE Publications

ISBN: 1544332602

Category: Social Science

Page: 96

View: 8292

This book builds on John Fox's previous volume in the QASS Series, Non Parametric Simple Regression. In this book, the reader learns how to estimate and plot smooth functions when there are multiple independent variables.
Release

Generalized Linear Models

A Bayesian Perspective

Author: Dipak K. Dey,Sujit K. Ghosh,Bani K. Mallick

Publisher: CRC Press

ISBN: 1482293455

Category: Mathematics

Page: 440

View: 9534

This volume describes how to conceptualize, perform, and critique traditional generalized linear models (GLMs) from a Bayesian perspective and how to use modern computational methods to summarize inferences using simulation. Introducing dynamic modeling for GLMs and containing over 1000 references and equations, Generalized Linear Models considers parametric and semiparametric approaches to overdispersed GLMs, presents methods of analyzing correlated binary data using latent variables. It also proposes a semiparametric method to model link functions for binary response data, and identifies areas of important future research and new applications of GLMs.
Release

Nonparametric Regression and Spline Smoothing, Second Edition

Author: Randall L. Eubank

Publisher: CRC Press

ISBN: 9780824793371

Category: Mathematics

Page: 360

View: 2534

Provides a unified account of the most popular approaches to nonparametric regression smoothing. This edition contains discussions of boundary corrections for trigonometric series estimators; detailed asymptotics for polynomial regression; testing goodness-of-fit; estimation in partially linear models; practical aspects, problems and methods for confidence intervals and bands; local polynomial regression; and form and asymptotic properties of linear smoothing splines.
Release

Verallgemeinerte stochastische Prozesse

Modellierung und Anwendung technischer Rauschprozesse

Author: Stefan Schäffler

Publisher: Springer-Verlag

ISBN: 366254265X

Category: Mathematics

Page: 183

View: 1279

Dieses Lehrbuch behandelt die in Natur- und Ingenieurwissenschaften eine zentrale Rolle spielenden Rauschprozesse, wie weißes Rauschen in der Raumsondenkommunikation oder thermisches Rauschen und Schrotrauschen in elektronischen Bauelementen.In dieser Form einzigartig, entwickelt der Autor die mathematische Theorie der verallgemeinerten stochastischen Prozesse und spricht dabei die Anwendung dieser mathematischen Objekte in der Praxis (z.B. Schaltkreissimulation, digitale Nachrichtenübertragung und Bildverarbeitung) an; somit dient dieses Lehrbuch auch als praxisrelevante Einführung in die Modellierung und Verwendung technischer Rauschprozesse. Die mathematische Modellierung von Rauschprozessen führt auf die Theorie stochastischer Prozesse auf Basis verallgemeinerter Funktionen (Distributionen), ohne die kein Handy funktionieren und Anwendungen wie die Simulation komplexer elektronischer Schaltungen unmöglich wäre.Für Anwender und interessierte Mathematiker bietet dieses Werk erstmals einen mathematisch fundierten Einblick in diese Thematik.
Release

Applied Regression Analysis and Generalized Linear Models

Author: John Fox

Publisher: SAGE Publications

ISBN: 1483321312

Category: Social Science

Page: 816

View: 7237

Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book.
Release

Predictive Modeling Applications in Actuarial Science: Volume 1, Predictive Modeling Techniques

Author: Edward W. Frees,Richard A. Derrig,Glenn Meyers

Publisher: Cambridge University Press

ISBN: 1139992317

Category: Business & Economics

Page: N.A

View: 7806

Predictive modeling involves the use of data to forecast future events. It relies on capturing relationships between explanatory variables and the predicted variables from past occurrences and exploiting this to predict future outcomes. Forecasting future financial events is a core actuarial skill - actuaries routinely apply predictive-modeling techniques in insurance and other risk-management applications. This book is for actuaries and other financial analysts who are developing their expertise in statistics and wish to become familiar with concrete examples of predictive modeling. The book also addresses the needs of more seasoned practising analysts who would like an overview of advanced statistical topics that are particularly relevant in actuarial practice. Predictive Modeling Applications in Actuarial Science emphasizes lifelong learning by developing tools in an insurance context, providing the relevant actuarial applications, and introducing advanced statistical techniques that can be used by analysts to gain a competitive advantage in situations with complex data.
Release

Predictive Modeling Applications in Actuarial Science

Author: Edward W. Frees,Richard A. Derrig,Glenn Meyers

Publisher: Cambridge University Press

ISBN: 1107029872

Category: Business & Economics

Page: 544

View: 1104

This book is for actuaries and financial analysts developing their expertise in statistics and who wish to become familiar with concrete examples of predictive modeling.
Release

Semimartingales and their Statistical Inference

Author: B.L.S. Prakasa Rao

Publisher: CRC Press

ISBN: 9781584880080

Category: Mathematics

Page: 450

View: 1308

Statistical inference carries great significance in model building from both the theoretical and the applications points of view. Its applications to engineering and economic systems, financial economics, and the biological and medical sciences have made statistical inference for stochastic processes a well-recognized and important branch of statistics and probability. The class of semimartingales includes a large class of stochastic processes, including diffusion type processes, point processes, and diffusion type processes with jumps, widely used for stochastic modeling. Until now, however, researchers have had no single reference that collected the research conducted on the asymptotic theory for semimartingales. Semimartingales and their Statistical Inference, fills this need by presenting a comprehensive discussion of the asymptotic theory of semimartingales at a level needed for researchers working in the area of statistical inference for stochastic processes. The author brings together into one volume the state-of-the-art in the inferential aspect for such processes. The topics discussed include: Asymptotic likelihood theory Quasi-likelihood Likelihood and efficiency Inference for counting processes Inference for semimartingale regression models The author addresses a number of stochastic modeling applications from engineering, economic systems, financial economics, and medical sciences. He also includes some of the new and challenging statistical and probabilistic problems facing today's active researchers working in the area of inference for stochastic processes.
Release

Modern Methods for Robust Regression

Author: Robert Andersen

Publisher: SAGE

ISBN: 1412940729

Category: Social Science

Page: 107

View: 8291

Geared towards both future and practising social scientists, this book takes an applied approach and offers readers empirical examples to illustrate key concepts. It includes: applied coverage of a topic that has traditionally been discussed from a theoretical standpoint; empirical examples to illustrate key concepts; a web appendix that provides readers with the data and the R-code for the examples used in the book.
Release

Multivariate Statistical Modelling Based on Generalized Linear Models

Author: Ludwig Fahrmeir,Gerhard Tutz

Publisher: Springer Science & Business Media

ISBN: 1489900101

Category: Mathematics

Page: 426

View: 8669

Concerned with the use of generalised linear models for univariate and multivariate regression analysis, this is a detailed introductory survey of the subject, based on the analysis of real data drawn from a variety of subjects such as the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account.
Release

Data Mining Algorithms

Explained Using R

Author: Pawel Cichosz

Publisher: John Wiley & Sons

ISBN: 1118950801

Category: Mathematics

Page: 720

View: 8823

Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R.
Release

Data Analysis and Data Mining

An Introduction

Author: Adelchi Azzalini,Bruno Scarpa

Publisher: Oxford University Press

ISBN: 0199942714

Category: Business & Economics

Page: 288

View: 7890

An introduction to statistical data mining, Data Analysis and Data Mining is both textbook and professional resource. Assuming only a basic knowledge of statistical reasoning, it presents core concepts in data mining and exploratory statistical models to students and professional statisticians-both those working in communications and those working in a technological or scientific capacity-who have a limited knowledge of data mining. This book presents key statistical concepts by way of case studies, giving readers the benefit of learning from real problems and real data. Aided by a diverse range of statistical methods and techniques, readers will move from simple problems to complex problems. Through these case studies, authors Adelchi Azzalini and Bruno Scarpa explain exactly how statistical methods work; rather than relying on the "push the button" philosophy, they demonstrate how to use statistical tools to find the best solution to any given problem. Case studies feature current topics highly relevant to data mining, such web page traffic; the segmentation of customers; selection of customers for direct mail commercial campaigns; fraud detection; and measurements of customer satisfaction. Appropriate for both advanced undergraduate and graduate students, this much-needed book will fill a gap between higher level books, which emphasize technical explanations, and lower level books, which assume no prior knowledge and do not explain the methodology behind the statistical operations.
Release

Extreme Value Methods with Applications to Finance

Author: Serguei Y. Novak

Publisher: CRC Press

ISBN: 1439835748

Category: Mathematics

Page: 399

View: 4781

Extreme value theory (EVT) deals with extreme (rare) events, which are sometimes reported as outliers. Certain textbooks encourage readers to remove outliers—in other words, to correct reality if it does not fit the model. Recognizing that any model is only an approximation of reality, statisticians are eager to extract information about unknown distribution making as few assumptions as possible. Extreme Value Methods with Applications to Finance concentrates on modern topics in EVT, such as processes of exceedances, compound Poisson approximation, Poisson cluster approximation, and nonparametric estimation methods. These topics have not been fully focused on in other books on extremes. In addition, the book covers: Extremes in samples of random size Methods of estimating extreme quantiles and tail probabilities Self-normalized sums of random variables Measures of market risk Along with examples from finance and insurance to illustrate the methods, Extreme Value Methods with Applications to Finance includes over 200 exercises, making it useful as a reference book, self-study tool, or comprehensive course text. A systematic background to a rapidly growing branch of modern Probability and Statistics: extreme value theory for stationary sequences of random variables.
Release

Fast Compact Algorithms and Software for Spline Smoothing

Author: Howard L. Weinert

Publisher: Springer Science & Business Media

ISBN: 1461454964

Category: Computers

Page: 45

View: 7630

Fast Compact Algorithms and Software for Spline Smoothing investigates algorithmic alternatives for computing cubic smoothing splines when the amount of smoothing is determined automatically by minimizing the generalized cross-validation score. These algorithms are based on Cholesky factorization, QR factorization, or the fast Fourier transform. All algorithms are implemented in MATLAB and are compared based on speed, memory use, and accuracy. An overall best algorithm is identified, which allows very large data sets to be processed quickly on a personal computer.
Release

A Mathematical Primer for Social Statistics

Author: John Fox

Publisher: SAGE

ISBN: 1412960800

Category: Mathematics

Page: 170

View: 6169

Beyond the introductory level, learning and effectively using statistical methods in the social sciences requires some knowledge of mathematics. This handy volume introduces the areas of mathematics that are most important to applied social statistics.
Release

Advanced Linear Modeling

Multivariate, Time Series, and Spatial Data; Nonparametric Regression and Response Surface Maximization

Author: Ronald Christensen

Publisher: Springer Science & Business Media

ISBN: 9780387952963

Category: Mathematics

Page: 398

View: 6055

This book introduces several topics related to linear model theory: multivariate linear models, discriminant analysis, principal components, factor analysis, time series in both the frequency and time domains, and spatial data analysis. The second edition adds new material on nonparametric regression, response surface maximization, and longitudinal models. The book provides a unified approach to these disparate subject and serves as a self-contained companion volume to the author's Plane Answers to Complex Questions: The Theory of Linear Models. Ronald Christensen is Professor of Statistics at the University of New Mexico. He is well known for his work on the theory and application of linear models having linear structure. He is the author of numerous technical articles and several books and he is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics. Also Available: Christensen, Ronald. Plane Answers to Complex Questions: The Theory of Linear Models, Second Edition (1996). New York: Springer-Verlag New York, Inc. Christensen, Ronald. Log-Linear Models and Logistic Regression, Second Edition (1997). New York: Springer-Verlag New York, Inc.
Release