New Foundations for Classical Mechanics

Author: David Hestenes

Publisher: Springer Science & Business Media

ISBN: 9780792353027

Category: Language Arts & Disciplines

Page: 703

View: 9567

This book provides an introduction to geometric algebra as a unified language for physics and mathematics. It contains extensive applications to classical mechanics in a textbook format suitable for courses at an intermediate level. The text is supported by more than 200 diagrams to help develop geometrical and physical intuition. Besides covering the standard material for a course on the mechanics of particles and rigid bodies, the book introduces new, coordinate-free methods for rotational dynamics and orbital mechanics, developing these subjects to a level well beyond that of other textbooks. These methods have been widely applied in recent years to biomechanics and robotics, to computer vision and geometric design, to orbital mechanics in government and industrial space programs, as well as to other branches of physics. The book applies them to the major perturbations in the solar system, including the planetary perturbations of Mercury's perihelion. Geometric algebra integrates conventional vector algebra (along with its established notations) into a system with all the advantages of quaternions and spinors. Thus, it increases the power of the mathematical language of classical mechanics while bringing it closer to the language of quantum mechanics. This book systematically develops purely mathematical applications of geometric algebra useful in physics, including extensive applications to linear algebra and transformation groups. It contains sufficient material for a course on mathematical topics alone. The second edition has been expanded by nearly a hundred pages on relativistic mechanics. The treatment is unique in its exclusive use of geometric algebra and in its detailed treatment of spacetime maps, collisions, motion in uniform fields and relativistic precession. It conforms with Einstein's view that the Special Theory of Relativity is the culmination of developments in classical mechanics.
Release

New Foundations for Classical Mechanics

Author: D. Hestenes

Publisher: Springer Science & Business Media

ISBN: 0306471221

Category: Science

Page: 706

View: 9479

(revised) This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American physicist J. Willard Gibbs, but for some applications of mechanics the algebra of complex numbers is more efficient than vector algebra, while in other applications matrix algebra works better. Geometric algebra integrates all these algebraic systems into a coherent mathematical language which not only retains the advantages of each special algebra but possesses powerful new capabilities. This book covers the fairly standard material for a course on the mechanics of particles and rigid bodies. However, it will be seen that geometric algebra brings new insights into the treatment of nearly every topic and produces simplifications that move the subject quickly to advanced levels. That has made it possible in this book to carry the treatment of two major topics in mechanics well beyond the level of other textbooks. A few words are in order about the unique treatment of these two topics, namely, rotational dynamics and celestial mechanics.
Release

Classical Mechanics

Author: J. Michael Finn

Publisher: Jones & Bartlett Publishers

ISBN: 0763779601

Category: Science

Page: 500

View: 2233

Classical Mechanics presents an updated treatment of the dynamics of particles and particle systems suitable for students preparing for advanced study of physics and closely related fields, such as astronomy and the applied engineering sciences. Compared to older books on this subject, the mathematical treatment has been updated for the study of more advanced topics in quantum mechanics, statistical mechanics, and nonlinear and orbital mechanics. The text begins with a review of the principles of classical Newtonian dynamics of particles and particle systems and proceeds to show how these principles are modified and extended by developments in the field. The text ends with the unification of space and time given by the Special Theory of Relativity. In addition, Hamiltonian dynamics and the concept of phase space are introduced early on. This allows integration of the concepts of chaos and other nonlinear effects into the main flow of the text. The role of symmetries and the underlying geometric structure of space-time is a key theme. In the latter chapters, the connection between classical and quantum mechanics is examined in some detail.
Release

The Structure of Physics

Author: Carl F. von Weizsäcker

Publisher: Springer Science & Business Media

ISBN: 1402052359

Category: Science

Page: 360

View: 4110

The book is a newly arranged and revised English version of "Aufbau der Physik" by Carl Friedrich von Weizsäcker. Some original chapters and sections have been deleted, and a new chapter about further insights and results of ur-theoretic research of the late 1980’s and 1990’s has been included. Carl Friedrich von Weizsäcker combines the perspectives of science, philosophy, religion and politics with a view towards the challenges as well as the responsibilities of our time.
Release

Mathematical Foundations of Quantum Theory

Author: A.R. Marlow

Publisher: Elsevier

ISBN: 0323141188

Category: Science

Page: 382

View: 415

Mathematical Foundations of Quantum Theory is a collection of papers presented at the 1977 conference on the Mathematical Foundations of Quantum Theory, held in New Orleans. The contributors present their topics from a wide variety of backgrounds and specialization, but all shared a common interest in answering quantum issues. Organized into 20 chapters, this book's opening chapters establish a sound mathematical basis for quantum theory and a mode of observation in the double slit experiment. This book then describes the Lorentz particle system and other mathematical structures with which fundamental quantum theory must deal, and then some unsolved problems in the quantum logic approach to the foundations of quantum mechanics are considered. Considerable chapters cover topics on manuals and logics for quantum mechanics. This book also examines the problems in quantum logic, and then presents examples of their interpretation and relevance to nonclassical logic and statistics. The accommodation of conventional Fermi-Dirac and Bose-Einstein statistics in quantum mechanics or quantum field theory is illustrated. The final chapters of the book present a system of axioms for nonrelativistic quantum mechanics, with particular emphasis on the role of density operators as states. Specific connections of this theory with other formulations of quantum theory are also considered. These chapters also deal with the determination of the state of an elementary quantum mechanical system by the associated position and momentum distribution. This book is of value to physicists, mathematicians, and researchers who are interested in quantum theory.
Release

Quantum Theory: Informational Foundations and Foils

Author: Giulio Chiribella,Robert W. Spekkens

Publisher: Springer

ISBN: 9401773033

Category: Science

Page: 528

View: 9299

This book provides the first unified overview of the burgeoning research area at the interface between Quantum Foundations and Quantum Information. Topics include: operational alternatives to quantum theory, information-theoretic reconstructions of the quantum formalism, mathematical frameworks for operational theories, and device-independent features of the set of quantum correlations. Powered by the injection of fresh ideas from the field of Quantum Information and Computation, the foundations of Quantum Mechanics are in the midst of a renaissance. The last two decades have seen an explosion of new results and research directions, attracting broad interest in the scientific community. The variety and number of different approaches, however, makes it challenging for a newcomer to obtain a big picture of the field and of its high-level goals. Here, fourteen original contributions from leading experts in the field cover some of the most promising research directions that have emerged in the new wave of quantum foundations. The book is directed at researchers in physics, computer science, and mathematics and would be appropriate as the basis of a graduate course in Quantum Foundations.
Release

Electrodynamics and Classical Theory of Fields & Particles

Author: Asim Orhan Barut

Publisher: Courier Corporation

ISBN: 9780486640389

Category: Science

Page: 235

View: 2943

The first comprehensive treatment of relativistic electrodynamics, this volume remains essential reading. This graduate-level text was written by a distinguished theoretical physicist. It deftly reveals the classical underpinnings of modern quantum field theory with explorations of space-time, Lorentz transformations, conservation laws, equations of motion, Green’s functions, and action-at-a-distance electrodynamics. 1964 edition.
Release

Concepts of Force

Author: Max Jammer

Publisher: Courier Corporation

ISBN: 0486150569

Category: Science

Page: 288

View: 4430

This work by a noted physicist traces conceptual development from ancient to modern times. Kepler's initiation, Newton's definition, subsequent reinterpretation — contrasting concepts of Leibniz, Boscovich, Kant with those of Mach, Kirchhoff, Hertz. "An excellent presentation." — Science.
Release

Philosophy and the Foundations of Dynamics

Author: Lawrence Sklar

Publisher: Cambridge University Press

ISBN: 0521888190

Category: Philosophy

Page: 279

View: 1550

Examines the main theories of dynamics, their original inception and their evolution over time into contemporary foundational theories.
Release

Classical Mechanics, Second Edition

Author: Tai L. Chow

Publisher: CRC Press

ISBN: 1466570008

Category: Science

Page: 639

View: 7067

Classical Mechanics, Second Edition presents a complete account of the classical mechanics of particles and systems for physics students at the advanced undergraduate level. The book evolved from a set of lecture notes for a course on the subject taught by the author at California State University, Stanislaus, for many years. It assumes the reader has been exposed to a course in calculus and a calculus-based general physics course. However, no prior knowledge of differential equations is required. Differential equations and new mathematical methods are developed in the text as the occasion demands. The book begins by describing fundamental concepts, such as velocity and acceleration, upon which subsequent chapters build. The second edition has been updated with two new sections added to the chapter on Hamiltonian formulations, and the chapter on collisions and scattering has been rewritten. The book also contains three new chapters covering Newtonian gravity, the Hamilton-Jacobi theory of dynamics, and an introduction to Lagrangian and Hamiltonian formulations for continuous systems and classical fields. To help students develop more familiarity with Lagrangian and Hamiltonian formulations, these essential methods are introduced relatively early in the text. The topics discussed emphasize a modern perspective, with special note given to concepts that were instrumental in the development of modern physics, for example, the relationship between symmetries and the laws of conservation. Applications to other branches of physics are also included wherever possible. The author provides detailed mathematical manipulations, while limiting the inclusion of the more lengthy and tedious ones. Each chapter contains homework problems of varying degrees of difficulty to enhance understanding of the material in the text. This edition also contains four new appendices on D'Alembert's principle and Lagrange's equations, derivation of Hamilton’s principle, Noether’s theorem, and conic sections.
Release

Theoretische Konzepte der Physik

Eine alternative Betrachtung

Author: Malcolm S. Longair

Publisher: Springer-Verlag

ISBN: 3642761119

Category: Science

Page: 380

View: 9310

"Dies ist kein Lehrbuch der theoretischen Physik, auch kein Kompendium der Physikgeschichte ... , vielmehr eine recht anspruchsvolle Sammlung historischer Miniaturen zur Vergangenheit der theoretischen Physik - ihrer "Sternstunden", wenn man so will. Frei vom Zwang, etwas Erschöpfendes vorlegen zu müssen, gelingt dem Autor etwas Seltenes: einen "lebendigen" Zugang zum Ideengebäude der modernen Physik freizulegen, ... zu zeigen, wie Physik in praxi entsteht... Als Vehikel seiner Absichten dienen dem Autor geschichtliche Fallstudien, insgesamt sieben an der Zahl. Aus ihnen extrahiert er das seiner Meinung nach Lehrhafte, dabei bestrebt, mathematische Anachronismen womöglich zu vermeiden... Als Student hätte ich mir diese gescheiten Essays zum Werden unserer heutigen physikalischen Weltsicht gewünscht. Sie sind originell, didaktisch klug und genieren sich auch nicht, von der Faszination zu sprechen, die ... von der Physik ausgeht. Unnötig darauf hinzuweisen, das sie ein gründliches "konventionelles" Studium weder ersetzen wollen noch können, sie vermögen aber, dazu zu ermuntern." #Astronomische Nachrichten (zur englischen Ausgabe)#1
Release

The Oxford Handbook of Philosophy of Physics

Author: Robert Batterman

Publisher: Oxford University Press

ISBN: 0195392043

Category: Philosophy

Page: 688

View: 9197

This Oxford Handbook provides an overview of many of the topics that currently engage philosophers of physics. It surveys new issues and the problems that have become a focus of attention in recent years. It also provides up-to-date discussions of the still very important problems that dominated the field in the past. In the late 20th Century, the philosophy of physics was largely focused on orthodox Quantum Mechanics and Relativity Theory. The measurement problem, the question of the possibility of hidden variables, and the nature of quantum locality dominated the literature on the quantum mechanics, whereas questions about relationalism vs. substantivalism, and issues about underdetermination of theories dominated the literature on spacetime. These issues still receive considerable attention from philosophers, but many have shifted their attentions to other questions related to quantum mechanics and to spacetime theories. Quantum field theory has become a major focus, particularly from the point of view of algebraic foundations. Concurrent with these trends, there has been a focus on understanding gauge invariance and symmetries. The philosophy of physics has evolved even further in recent years with attention being paid to theories that, for the most part, were largely ignored in the past. For example, the relationship between thermodynamics and statistical mechanics—-once thought to be a paradigm instance of unproblematic theory reduction—-is now a hotly debated topic. The implicit, and sometimes explicit, reductionist methodology of both philosophers and physicists has been severely criticized and attention has now turned to the explanatory and descriptive roles of "non-fundamental,'' phenomenological theories. This shift of attention includes "old'' theories such as classical mechanics, once deemed to be of little philosophical interest. Furthermore, some philosophers have become more interested in "less fundamental'' contemporary physics such as condensed matter theory. Questions abound with implications for the nature of models, idealizations, and explanation in physics. This Handbook showcases all these aspects of this complex and dynamic discipline.
Release

Introduction to Soliton Theory: Applications to Mechanics

Author: Ligia Munteanu,Stefania Donescu

Publisher: Springer Science & Business Media

ISBN: 1402025777

Category: Mathematics

Page: 222

View: 5898

This monograph is planned to provide the application of the soliton theory to solve certain practical problems selected from the fields of solid mechanics, fluid mechanics and biomechanics. The work is based mainly on the authors’ research carried out at their home institutes, and on some specified, significant results existing in the published literature. The methodology to study a given evolution equation is to seek the waves of permanent form, to test whether it possesses any symmetry properties, and whether it is stable and solitonic in nature. Students of physics, applied mathematics, and engineering are usually exposed to various branches of nonlinear mechanics, especially to the soliton theory. The soliton is regarded as an entity, a quasi-particle, which conserves its character and interacts with the surroundings and other solitons as a particle. It is related to a strange phenomenon, which consists in the propagation of certain waves without attenuation in dissipative media. This phenomenon has been known for about 200 years (it was described, for example, by the Joule Verne's novel Les histoires de Jean Marie Cabidoulin, Éd. Hetzel), but its detailed quantitative description became possible only in the last 30 years due to the exceptional development of computers. The discovery of the physical soliton is attributed to John Scott Russell. In 1834, Russell was observing a boat being drawn along a narrow channel by a pair of horses.
Release

A Modern Approach to Classical Mechanics

Author: Harald Iro

Publisher: World Scientific

ISBN: 9789812382139

Category: Science

Page: 442

View: 8284

The approach to classical mechanics adopted in this book includes and stresses recent developments in nonlinear dynamical systems. The concepts necessary to formulate and understand chaotic behavior are presented. Besides the conventional topics (such as oscillators, the Kepler problem, spinning tops and the two centers problem) studied in the frame of Newtonian, Lagrangian, and Hamiltonian mechanics, nonintegrable systems (the H‚non-Heiles system, motion in a Coulomb force field together with a homogeneous magnetic field, the restricted three-body problem) are also discussed. The question of the integrability (of planetary motion, for example) leads finally to the KAM-theorem.This book is the result of lectures on 'Classical Mechanics' as the first part of a basic course in Theoretical Physics. These lectures were given by the author to undergraduate students in their second year at the Johannes Kepler University Linz, Austria. The book is also addressed to lecturers in this field and to physicists who want to obtain a new perspective on classical mechanics.
Release

Information Theory and Quantum Physics

Physical Foundations for Understanding the Conscious Process

Author: Herbert S. Green

Publisher: Springer Science & Business Media

ISBN: 364257162X

Category: Science

Page: 244

View: 8701

In this highly readable book, H.S. Green, a former student of Max Born and well known as an author in physics and in the philosophy of science, presents a timely analysis of theoretical physics and related fundamental problems.
Release

Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems

Author: Masanori Ohya,I. Volovich

Publisher: Springer Science & Business Media

ISBN: 9789400701717

Category: Science

Page: 760

View: 3447

This monograph provides a mathematical foundation to the theory of quantum information and computation, with applications to various open systems including nano and bio systems. It includes introductory material on algorithm, functional analysis, probability theory, information theory, quantum mechanics and quantum field theory. Apart from standard material on quantum information like quantum algorithm and teleportation, the authors discuss findings on the theory of entropy in C*-dynamical systems, space-time dependence of quantum entangled states, entangling operators, adaptive dynamics, relativistic quantum information, and a new paradigm for quantum computation beyond the usual quantum Turing machine. Also, some important applications of information theory to genetics and life sciences, as well as recent experimental and theoretical discoveries in quantum photosynthesis are described.
Release

Rational Reconstructions of Modern Physics

Author: Peter Mittelstaedt

Publisher: Springer Science & Business Media

ISBN: 9400755937

Category: Science

Page: 141

View: 7492

Newton’s classical physics and its underlying ontology are loaded with several metaphysical hypotheses that cannot be justified by rational reasoning nor by experimental evidence. Furthermore, it is well known that some of these hypotheses are not contained in the great theories of Modern Physics, such as the theory of Special Relativity and Quantum Mechanics. This book shows that, on the basis of Newton’s classical physics and by rational reconstruction, the theory of Special Relativity as well as Quantum Mechanics can be obtained by partly eliminating or attenuating the metaphysical hypotheses. Moreover, it is shown that these reconstructions do not require additional hypotheses or new experimental results. In the second edition the rational reconstructions are completed with respect to General Relativity and Cosmology. In addition, the statistics of quantum objects is elaborated in more detail with respect to the rational reconstruction of quantum mechanics. The new material completes the approach of the book as much as it is possible at the present state of knowledge. Presumably, the most important contribution that is added to the second edition refers to the problem of interpretation of the three great theories of Modern Physics. It is shown in detail that in the light of rational reconstructions even realistic interpretations of the three theories of Modern Physics are possible and can easily be achieved.
Release