Likelihood

Author: A. W. F. Edwards

Publisher: CUP Archive

ISBN: 9780521318716

Category: Mathematics

Page: 235

View: 4204

Dr Edwards' stimulating and provocative book advances the thesis that the appropriate axiomatic basis for inductive inference is not that of probability, with its addition axiom, but rather likelihood - the concept introduced by Fisher as a measure of relative support amongst different hypotheses. Starting from the simplest considerations and assuming no more than a modest acquaintance with probability theory, the author sets out to reconstruct nothing less than a consistent theory of statistical inference in science.
Release

Statistical Inference Based on the likelihood

Author: Adelchi Azzalini

Publisher: Routledge

ISBN: 1351414461

Category: Mathematics

Page: 352

View: 1358

The Likelihood plays a key role in both introducing general notions of statistical theory, and in developing specific methods. This book introduces likelihood-based statistical theory and related methods from a classical viewpoint, and demonstrates how the main body of currently used statistical techniques can be generated from a few key concepts, in particular the likelihood. Focusing on those methods, which have both a solid theoretical background and practical relevance, the author gives formal justification of the methods used and provides numerical examples with real data.
Release

Parametrische Statistik

Verteilungen, maximum likelihood und GLM in R

Author: Carsten F. Dormann

Publisher: Springer-Verlag

ISBN: 3662546841

Category: Medical

Page: 363

View: 2333

Beispielreich baut dieses Buch Schritt für Schritt die statistischen Grundlagen moderner Datenanalysen auf. Im Gegensatz zu anderen einführenden Werken legt dieses Buch großen Wert auf einen umfassend gespannten Bogen, einen roten Faden, der alle Methoden zusammenführt. Dabei werden klassische statistische Methoden (etwa t-Test oder multiple Regression) als Spezialfall des Generalisierten Linearen Modells entwickelt. Entsprechend legt das Buch zunächst eine Grundlage in beschreibender Statistik, Verteilungen und maximum likelihood, aus der dann alle anderen Verfahren abgeleitet werden (ANOVA, multiple Regression). Jeder Schritt ist auf zwei Kapitel verteilt: Im ungradzahligen Kapitel wird anhand von vielen Beispielen und Abbildungen die Idee der statistischen Herangehensweise erläutert. Im sich daran anschließenden gradzahligen Kapitel wird die Umsetzung in der freien Statistiksoftware R gezeigt. Ein Kapitel zur Wissenschafts- und Forschungstheorie und eines zum Design von Experimenten und Stichprobeverfahren komplettiert dieses einleitende Werk. Das Buch legt großen Wert auf Verständlichkeit und Umsetzung. Mathematische Herleitungen treten demgegenüber stark in den Hintergrund. Jedes Kapitel enthält explizit ausgewiesene Lerninhalte, die durch Übungen zu jedem R-Kapitel geprüft werden können. Ein ausführliches Schlagwortverzeichnis inklusive der R-Funktionen macht das Buch auch als Nachschlagewerk nutzbar. Die zweite Auflage wurde ergänzt um Schätzung mittels der Momentenmethode, Residuendiagnostik für nicht-normalverteilte Daten und die erschöpfende Modellsuche.
Release

Maximum Likelihood Estimation

Logic and Practice

Author: Scott R. Eliason

Publisher: SAGE

ISBN: 9780803941076

Category: Mathematics

Page: 87

View: 3451

In this volume the underlying logic and practice of maximum likelihood (ML) estimation is made clear by providing a general modeling framework that utilizes the tools of ML methods. This framework offers readers a flexible modeling strategy since it accommodates cases from the simplest linear models to the most complex nonlinear models that link a system of endogenous and exogenous variables with non-normal distributions. Using examples to illustrate the techniques of finding ML estimators and estimates, Eliason discusses: what properties are desirable in an estimator; basic techniques for finding ML solutions; the general form of the covariance matrix for ML estimates; the sampling distribution of ML estimators; the application of ML in the normal distribution as well as in other useful distributions; and some helpful illustrations of likelihoods.
Release

Likelihood-basierte Entscheidungstheorie unter Unsicherheit. Das Minimax-Prinzip und das Bayes-Prinzip

Author: Claudio Salvati

Publisher: GRIN Verlag

ISBN: 3668449147

Category: Mathematics

Page: 23

View: 6836

Studienarbeit aus dem Jahr 2017 im Fachbereich Statistik, Note: 2,00, Ludwig-Maximilians-Universität München (Institut für Statistik), Veranstaltung: Fortgeschrittene Themen der Entscheidungstheorie, Sprache: Deutsch, Abstract: Die vorliegende Arbeit wird zunächst die Grundlagen der Entscheidungstheorie skizzieren, zwei bekannte Verfahren - das Minimax-Prinzip und das Bayes-Prinzip - vorstellen und anhand eines praktischen Beispiels aus der Vorlesung die Vorgehensweise veranschaulichen. Der Fokus liegt allerdings auf einem der Likelihood-Funktion zugrunde liegenden Entscheidungsverfahren: Im Hauptteil werden zunächst die der Likelihood zu Grunde liegende Idee und die Annahmen sowie Eigenschaften der Likelihood-Funktion erläutert und danach Entscheidungsverfahren und ihre Umsetzung eingeführt, die auf ihr basieren.
Release

Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics

Author: Daniel Sorensen,Daniel Gianola

Publisher: Springer Science & Business Media

ISBN: 0387954406

Category: Science

Page: 740

View: 314

This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits. Although a number of excellent texts in these areas have become available in recent years, the basic ideas and tools are typically described in a technically demanding style and contain much more detail than necessary. Here, an effort has been made to relate biological to statistical parameters throughout, and the book includes extensive examples that illustrate the developing argument.
Release

Econometric Modeling

A Likelihood Approach

Author: David F. Hendry,Bent Nielsen

Publisher: Princeton University Press

ISBN: 0691130892

Category: Business & Economics

Page: 365

View: 4680

Econometric Modeling provides a new and stimulating introduction to econometrics, focusing on modeling. The key issue confronting empirical economics is to establish sustainable relationships that are both supported by data and interpretable from economic theory. The unified likelihood-based approach of this book gives students the required statistical foundations of estimation and inference, and leads to a thorough understanding of econometric techniques. David Hendry and Bent Nielsen introduce modeling for a range of situations, including binary data sets, multiple regression, and cointegrated systems. In each setting, a statistical model is constructed to explain the observed variation in the data, with estimation and inference based on the likelihood function. Substantive issues are always addressed, showing how both statistical and economic assumptions can be tested and empirical results interpreted. Important empirical problems such as structural breaks, forecasting, and model selection are covered, and Monte Carlo simulation is explained and applied. Econometric Modeling is a self-contained introduction for advanced undergraduate or graduate students. Throughout, data illustrate and motivate the approach, and are available for computer-based teaching. Technical issues from probability theory and statistical theory are introduced only as needed. Nevertheless, the approach is rigorous, emphasizing the coherent formulation, estimation, and evaluation of econometric models relevant for empirical research.
Release

Nonlinear Statistical Estimation with Numerical Maximum Likelihood

Author: Gerald Gerard Brown

Publisher: N.A

ISBN: N.A

Category: Estimation theory

Page: 157

View: 5710

The topics of maximum likelihood estimation and nonlinear programming are developed thoroughly with emphasis on the numerical details of obtaining estimates from highly nonlinear models. Parametric estimation is discussed with the three parameter Weibull family of densities serving as an example. A general nonlinear programming method is discussed for both first and second order representations of the maximum likelihood estimaton, as well as a hybrid of both approaches. A new class of constrained parametric estimators is introduced with numerical methods for their determination. Structural estimation with maximum likelihood is examined, and a Bernoulli regression technique is presented.
Release

The Likelihood Principle

Author: James O. Berger,Robert L. Wolpert

Publisher: IMS

ISBN: 9780940600133

Category: Mathematics

Page: 208

View: 4102

Release

Maximum Likelihood Estimation with Stata, Third Edition

Author: William Gould,Jeffrey Pitblado,William Sribney

Publisher: Stata Press

ISBN: 1597180122

Category: Computers

Page: 290

View: 1703

Maximum Likelihood Estimation with Stata, Fourth Edition is written for researchers in all disciplines who need to compute maximum likelihood estimators that are not available as prepackaged routines. Readers are presumed to be familiar with Stata, but no special programming skills are assumed except in the last few chapters, which detail how to add a new estimation command to Stata. The book begins with an introduction to the theory of maximum likelihood estimation with particular attention on the practical implications for applied work. Individual chapters then describe in detail each of the four types of likelihood evaluator programs and provide numerous examples, such as logit and probit regression, Weibull regression, random-effects linear regression, and the Cox proportional hazards model. Later chapters and appendixes provide additional details about the ml command, provide checklists to follow when writing evaluators, and show how to write your own estimation commands.
Release

Maximum Penalized Likelihood Estimation

Volume II: Regression

Author: Paul P. Eggermont,Vincent N. LaRiccia

Publisher: Springer Science & Business Media

ISBN: 0387689028

Category: Mathematics

Page: 572

View: 7237

Unique blend of asymptotic theory and small sample practice through simulation experiments and data analysis. Novel reproducing kernel Hilbert space methods for the analysis of smoothing splines and local polynomials. Leading to uniform error bounds and honest confidence bands for the mean function using smoothing splines Exhaustive exposition of algorithms, including the Kalman filter, for the computation of smoothing splines of arbitrary order.
Release

Likeness and Likelihood in the Presocratics and Plato

Author: Jenny Bryan

Publisher: Cambridge University Press

ISBN: 0521762944

Category: History

Page: 210

View: 708

Studies the philosophical development of the meaning of the Greek word eoikos, which can be used to describe similarity, plausibility or even suitability. It focuses on Xenophanes, Parmenides and Plato's Timaeus and shows how such a study serves to enhance our understanding of their epistemology and methodology.
Release

Empirical Bayes and Likelihood Inference

Author: S.E. Ahmed,N. Reid

Publisher: Springer Science & Business Media

ISBN: 1461301416

Category: Mathematics

Page: 235

View: 9623

Bayesian and such approaches to inference have a number of points of close contact, especially from an asymptotic point of view. Both emphasize the construction of interval estimates of unknown parameters. In this volume, researchers present recent work on several aspects of Bayesian, likelihood and empirical Bayes methods, presented at a workshop held in Montreal, Canada. The goal of the workshop was to explore the linkages among the methods, and to suggest new directions for research in the theory of inference.
Release

Quasi-Likelihood And Its Application

A General Approach to Optimal Parameter Estimation

Author: C. C. Heyde

Publisher: Springer Science & Business Media

ISBN: 9780387982250

Category: Mathematics

Page: 235

View: 5408

This is author-approved bcc: Quasi-likelihood is a very generally applicable estimating function based methodology for optimally estimating model parameters in systems subject to random effects. Only assumptions about means and covariances are required in contrast to the full distributional assumptions of ordinary likelihood based methodology. This monograph gives the first account in book form of all the essential features of the quasi-likelihood methodology,and stresses its value as a general purpose inferential tool. The treatment is rather informal, emphasizing essential princples rather than detailed proofs. Many examples of the use of the methods in both classical statistical and stochastic process contexts are provided. Readers are assumed to have a firm grounding in probability and statistics at the graduate level. Christopher Heyde is Professor of Statistics at both Columbia University in New York and the Australian National University in Canberra. He is also Director of the Center for Applied Probability at Columbia. He is a Fellow of the Australian Academy of Science and has been Foundation Dean of the School of Mathematical Sciences at the Australian National University and Foundation Director of the Key Centre for Statistical Sciences in Melbourne. He has served as President of the Bernoulli Society and Vice President of the International Statistical Institute and is Editor-in-Chief of the international probability journals "Journal of Applied Probability" and "Advances in Applied Probability". He has done considerable distinguished research in probability and statistics which has been honoured by the awards of the Pitman Medal (1988),Hannan Medal.
Release

Econometric Applications of Maximum Likelihood Methods

Author: J. S. Cramer

Publisher: CUP Archive

ISBN: 9780521378574

Category: Business & Economics

Page: 224

View: 2036

The advent of electronic computing permits the empirical analysis of economic models of far greater subtlety and rigour than before, when many interesting ideas were not followed up because the calculations involved made this impracticable. The estimation and testing of these more intricate models is usually based on the method of Maximum Likelihood, which is a well-established branch of mathematical statistics. Its use in econometrics has led to the development of a number of special techniques; the specific conditions of econometric research moreover demand certain changes in the interpretation of the basic argument. This book is a self-contained introduction to this field. It consists of three parts. The first deals with general features of Maximum Likelihood methods; the second with linear and nonlinear regression; and the third with discrete choice and related micro-economic models. Readers should already be familiar with elementary statistical theory, with applied econometric research papers, or with the literature on the mathematical basis of Maximum Likelihood theory. They can also try their hand at some advanced econometric research of their own.
Release

Maximum Likelihood Estimation and Inference

With Examples in R, SAS and ADMB

Author: Russell B. Millar

Publisher: John Wiley & Sons

ISBN: 1119977711

Category: Mathematics

Page: 384

View: 7062

This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm. Key features: Provides an accessible introduction to pragmatic maximum likelihood modelling. Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood. Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data. Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology. Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB. Provides all program code and software extensions on a supporting website. Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters. This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.
Release

Information Bounds and Nonparametric Maximum Likelihood Estimation

Author: P. Groeneboom,J.A. Wellner

Publisher: Springer Science & Business Media

ISBN: 9783764327941

Category: Mathematics

Page: 128

View: 8261

This book contains the lecture notes for a DMV course presented by the authors at Gunzburg, Germany, in September, 1990. In the course we sketched the theory of information bounds for non parametric and semiparametric models, and developed the theory of non parametric maximum likelihood estimation in several particular inverse problems: interval censoring and deconvolution models. Part I, based on Jon Wellner's lectures, gives a brief sketch of information lower bound theory: Hajek's convolution theorem and extensions, useful minimax bounds for parametric problems due to Ibragimov and Has'minskii, and a recent result characterizing differentiable functionals due to van der Vaart (1991). The differentiability theorem is illustrated with the examples of interval censoring and deconvolution (which are pursued from the estimation perspective in part II). The differentiability theorem gives a way of clearly distinguishing situations in which 1 2 the parameter of interest can be estimated at rate n / and situations in which this is not the case. However it says nothing about which rates to expect when the functional is not differentiable. Even the casual reader will notice that several models are introduced, but not pursued in any detail; many problems remain. Part II, based on Piet Groeneboom's lectures, focuses on non parametric maximum likelihood estimates (NPMLE's) for certain inverse problems. The first chapter deals with the interval censoring problem.
Release

Maximum Likelihood Estimation for Sample Surveys

Author: Raymond L. Chambers,David G. Steel,Suojin Wang,Alan Welsh

Publisher: CRC Press

ISBN: 1420011359

Category: Mathematics

Page: 391

View: 2222

Sample surveys provide data used by researchers in a large range of disciplines to analyze important relationships using well-established and widely used likelihood methods. The methods used to select samples often result in the sample differing in important ways from the target population and standard application of likelihood methods can lead to biased and inefficient estimates. Maximum Likelihood Estimation for Sample Surveys presents an overview of likelihood methods for the analysis of sample survey data that account for the selection methods used, and includes all necessary background material on likelihood inference. It covers a range of data types, including multilevel data, and is illustrated by many worked examples using tractable and widely used models. It also discusses more advanced topics, such as combining data, non-response, and informative sampling. The book presents and develops a likelihood approach for fitting models to sample survey data. It explores and explains how the approach works in tractable though widely used models for which we can make considerable analytic progress. For less tractable models numerical methods are ultimately needed to compute the score and information functions and to compute the maximum likelihood estimates of the model parameters. For these models, the book shows what has to be done conceptually to develop analyses to the point that numerical methods can be applied. Designed for statisticians who are interested in the general theory of statistics, Maximum Likelihood Estimation for Sample Surveys is also aimed at statisticians focused on fitting models to sample survey data, as well as researchers who study relationships among variables and whose sources of data include surveys.
Release