Introduction to the structure of matter

a course in modern physics

Author: John J. Brehm,William J. Mullin

Publisher: John Wiley & Sons Inc


Category: Science

Page: 941

View: 532

A first course in two of the 20th century's most exciting contributions to physics: special relativity and quantum theory. Historical material is incorporated into the exposition. Coverage is broad and deep, offering the instructor flexibility in presentation. Nearly every section contains at least one illustrative example (with all calculations), and each chapter has a wide selection of problems. Topics covered include relativistic dynamics, quantum mechanics, parity, quantum statistical physics, the nuclear shell model, fission, fusion, color and the strong interaction, gauge symmetries, and grand unification.

Introduction to the Physics of Matter

Basic atomic, molecular, and solid-state physics

Author: Nicola Manini

Publisher: Springer

ISBN: 3319143824

Category: Science

Page: 276

View: 8856

This book offers an up-to-date, compact presentation of basic topics in the physics of matter, from atoms to molecules to solids, including elements of statistical mechanics. The adiabatic separation of the motion of electrons and nuclei in matter and its spectroscopic implications are outlined for molecules and recalled regularly in the study of the dynamics of gases and solids. Numerous experiments are described and more than 160 figures give a clear visual impression of the main concepts. Sufficient detail of mathematical derivations is provided to enable students to follow easily. The focus is on present-day understanding and especially on phenomena fitting various independent-particle models. The historical development of this understanding, and phenomena such as magnetism and superconductivity, where interparticle interactions and nonadiabatic effects play a crucial role, are mostly omitted. A final outlook section stimulates the curiosity of the reader to pursue the study of such advanced topics in graduate courses.

The Fourth State of Matter

An Introduction to Plasma Science, 2nd Edition

Author: Shalom Eliezer,Y Eliezer

Publisher: CRC Press

ISBN: 1420033433

Category: Science

Page: 224

View: 5071

Plasma physics may hold the key to a virtually inexhaustible future energy source through the control of thermonuclear reactions. The complexity of plasma physics makes it a difficult subject to write about in popular terms, but the authors of The Fourth State of Matter: An Introduction to Plasma Science, Second Edition treat plasma in a comprehensible way. Combining factual substance with an easy-to-read and lucid presentation, the book describes the characteristics of plasma, its distribution in the universe, and how it is used by man. It explores plasma in industry and presents current and possible future applications. The book also details the history of plasma research and plasma technology. Retained from the first edition, rhyming verses add fun to the explanation of what can be complicated scientific concepts. Accessible to anyone interested in plasma physics, this non-mathematical book is an excellent addition to a well-rounded science collection.

Introduction to Thermodynamics and Kinetic Theory of Matter

Author: Anatoly I. Burshtein

Publisher: John Wiley & Sons

ISBN: 3527618120

Category: Science

Page: 349

View: 2251

Imparts the similarities and differences between ratified and condensed matter, classical and quantum systems as well as real and ideal gases. Presents the quasi-thermodynamic theory of gas-liquid interface and its application for density profile calculation within the van der Waals theory of surface tension. Uses inductive logic to lead readers from observation and facts to personal interpretation and from specific conclusions to general ones.

An Introduction to the Standard Model of Particle Physics

Author: W. N. Cottingham,D. A. Greenwood

Publisher: Cambridge University Press

ISBN: 1139462210

Category: Science

Page: N.A

View: 3337

The second edition of this introductory graduate textbook provides a concise but accessible introduction to the Standard Model. It has been updated to account for the successes of the theory of strong interactions, and the observations on matter-antimatter asymmetry. It has become clear that neutrinos are not mass-less, and this book gives a coherent presentation of the phenomena and the theory that describes them. It includes an account of progress in the theory of strong interactions and of advances in neutrino physics. The book clearly develops the theoretical concepts from the electromagnetic and weak interactions of leptons and quarks to the strong interactions of quarks. Each chapter ends with problems, and hints to selected problems are provided at the end of the book. The mathematical treatments are suitable for graduates in physics, and more sophisticated mathematical ideas are developed in the text and appendices.

An Introduction to the Passage of Energetic Particles through Matter

Author: N.J Carron

Publisher: CRC Press

ISBN: 1420012371

Category: Science

Page: 384

View: 7096

Identifying where to access data, extracting a needed subset from available resources, and knowing how to interpret the format in which data are presented can be time-consuming tasks for scientists and engineers. By collecting all of this information and providing a background in physics, An Introduction to the Passage of Energetic Particles through Matter enables specialists and nonspecialists alike to understand and apply the data. Making modern data more accessible, this book explores the interactions with matter of energetic particles, including photons, electrons, protons, alpha particles, and neutrons. It presents quantities of interest in many applications, such as photon and neutron cross sections, charged particle stopping powers, electron mean ranges, and angular distributions. The book also discusses electron multiple scattering and models for electron mean range against both stopping power and scattering. The author uses numerous graphs throughout the book to illustrate the material and describes the basic physics underlying all processes. The accompanying CD-ROM includes full datasets and large color contour graphs of cross sections, stopping powers, and ranges in all elements at all interesting energies. Compiling information that is scattered throughout the literature, An Introduction to the Passage of Energetic Particles through Matter provides a comprehensive foundation of particle interactions that is of prime importance to many areas of applied physics and supplies an introduction to the massive, invaluable Evaluated Nuclear Data File (ENDF) library.

Physics of Continuous Matter

Exotic and Everyday Phenomena in the Macroscopic World

Author: B. Lautrup

Publisher: CRC Press

ISBN: 9780750307529

Category: Science

Page: 624

View: 8741

Offering a modern approach to this most classical of subjects, Physics of Continuous Matter is first and foremost an introduction to the basic concepts and phenomenology of continuous systems, and the derivations of the equations of continuum mechanics from Newtonian mechanics. Although many examples, particularly in the earlier chapters, are taken from geophysics and astrophysics, the author places the emphasis frimly on generic methods and applications. Each chapter begins with a ‘soft’ introduction, placing the discussion within an everyday context, and the level of difficulty then rises steadily, a pattern which is reflected throughout the text as a whole. The necessary mathematical tools are developed in parallel with the physics on a ‘need-to-know’ basis, an approach that avoids lengthy mathematical preliminaries.

The Structure of Matter

An Introduction to Atomic, Nuclear and Particle Physics

Author: Robert M. Turnbull

Publisher: International Ideas


Category: Matter

Page: 266

View: 9274


Molekülphysik und Quantenchemie

Einführung in die experimentellen und theoretischen Grundlagen

Author: Hermann Haken,Hans C. Wolf

Publisher: Springer-Verlag

ISBN: 3662088304

Category: Science

Page: 433

View: 8033

Molekülphysik und Quantenchemie führt gemeinsam in die Grundlagen der Gebiete ein, wie es zum Verständnis der physikalischen Eigenschaften von Molekülen und der chemischen Bindung erforderlich ist. Aufbauend auf Grundkenntnissen der Atom- und Quantenphysik (von den gleichen Autoren) vermittelt es den Studenten der Physik, der Physikalischen Chemie und der Theoretischen Chemie die experimentellen und theoretischen Grundlagen. Die zweite Auflage geht neben neueren theoretischen Ansätzen auf aktuelle Entwicklungen ein wie hochauflösende Zweiphotonen-, Ultrakurzzeit-, und Photoelektronenspektroskopie, optische Untersuchung einzelner Moleküle in kondensierter Phase, Elektrolumineszenz und Leuchtdioden.

Introduction to the Basic Concepts of Modern Physics

Author: Carlo Maria Becchi,Massimo D'Elia

Publisher: Springer Science & Business Media

ISBN: 9788847016163

Category: Science

Page: 185

View: 5384

These notes are designed as a text book for a course on the Modern Physics Theory for undergraduate students. The purpose is providing a rigorous and self-contained presentation of the simplest theoretical framework using elementary mathematical tools. A number of examples of relevant applications and an appropriate list of exercises and answered questions are also given.

Classical Physics of Matter

Author: J Bolton

Publisher: CRC Press

ISBN: 9780750307178

Category: Science

Page: 232

View: 1636

Classical Physics of Matter explores the properties of matter that can be explained more or less directly in terms of classical physics. Among the topics discussed are the principles of flight and the operation of engines and refrigerators. The discussion introduces ideas such as temperature, heat, and entropy that will take you beyond Newtonian mechanics and into the realm of thermodynamics and statistical physics.

Glassy Materials and Disordered Solids

An Introduction to Their Statistical Mechanics

Author: Kurt Binder,Walter Kob

Publisher: World Scientific

ISBN: 9814350176

Category: Science

Page: 547

View: 9365

This book gives a pedagogical introduction to the physics of amorphous solids and related disordered condensed matter systems. Important concepts from statistical mechanics such as percolation, random walks, fractals and spin glasses are explained. Using these concepts, the common aspects of these systems are emphasized, and the current understanding of the glass transition and the structure of glasses are concisely reviewed. This second edition includes new material on emerging topics in the field of disordered systems such as gels, driven systems, dynamical heterogeneities, growing length scales etc. as well as an update of the literature in this rapidly developing field.

Introduction to the Physics of Electrons in Solids

Author: Henri Alloul

Publisher: Springer Science & Business Media

ISBN: 9783642135651

Category: Science

Page: 618

View: 2762

This textbook sets out to enable readers to understand fundamental aspects underlying quantum macroscopic phenomena in solids, primarily through the modern experimental techniques and results. The classic independent-electrons approach for describing the electronic structure in terms of energy bands helps explain the occurrence of metals, insulators and semiconductors. It is underlined that superconductivity and magnetism can only be understood by taking into account the interactions between electrons. The text recounts the experimental observations that have revealed the main properties of the superconductors and were essential to track its physical origin. While fundamental concepts are underlined, those which are required to describe the high technology applications, present or future, are emphasized as well. Problem sets involve experimental approaches and tools which support a practical understanding of the materials and their behaviour.

Introduction to Condensed Matter Physics

Author: Duan Feng,Guojun Jin

Publisher: World Scientific

ISBN: 9812387110

Category: Science

Page: 591

View: 850

This is volume 1 of two-volume book that presents an excellent, comprehensive exposition of the multi-faceted subjects of modern condensed matter physics, unified within an original and coherent conceptual framework. Traditional subjects such as band theory and lattice dynamics are tightly organized in this framework, while many new developments emerge spontaneously from it. In this volume,? Basic concepts are emphasized; usually they are intuitively introduced, then more precisely formulated, and compared with correlated concepts.? A plethora of new topics, such as quasicrystals, photonic crystals, GMR, TMR, CMR, high Tc superconductors, Bose-Einstein condensation, etc., are presented with sharp physical insights.? Bond and band approaches are discussed in parallel, breaking the barrier between physics and chemistry.? A highly accessible chapter is included on correlated electronic states ? rarely found in an introductory text.? Introductory chapters on tunneling, mesoscopic phenomena, and quantum-confined nanostructures constitute a sound foundation for nanoscience and nanotechnology.? The text is profusely illustrated with about 500 figures.

Soft Matter Physics

An Introduction

Author: Maurice Kleman,Oleg D. Laverntovich

Publisher: Springer Science & Business Media

ISBN: 0387217592

Category: Science

Page: 637

View: 7811

The study of "soft matter" materials with complex properties has raised a number of interesting problems in basic physics, biology, and materials science, all of which promise new and important technological applications. After a review of chemical bonds and phase transitions, the authors treat topics such as surface phenomena, stability of colloidal systems, structural properties of polymers, and topological defects. The monograph's emphasis on underlying physical principles offers a coherent treatment of the great variety of research in the field.

Extreme States of Matter in Strong Interaction Physics

An Introduction

Author: Helmut Satz

Publisher: Springer Science & Business Media

ISBN: 3642239072

Category: Science

Page: 239

View: 7719

The thermodynamics of strongly interacting matter has become a profound and challenging area of modern physics, both in theory and in experiment. Statistical quantum chromodynamics, through analytical as well as numerical studies, provides the main theoretical tool, while in experiment, high-energy nuclear collisions are the key for extensive laboratory investigations. The field therefore straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. This course-tested primer addresses above all the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that emphasizes in particular the basic concepts and ideas, with the aim of explaining why we do what we do. To achieve this goal, the present text concentrates mainly on equilibrium thermodynamics: first, the fundamental ideas of strong interaction thermodynamics are introduced and then the main concepts and methods used in the study of the physics of complex systems are summarized. Subsequently, simplified phenomenological pictures, leading to critical behavior in hadronic matter and to hadron-quark phase transitions are introduced, followed by elements of finite-temperature lattice QCD leading to the important results obtained in computer simulation studies of the lattice approach. Next, the relation of the resulting critical behavior to symmetry breaking/restoration in QCD is clarified before the text turns to the study of the QCD phase diagram. The presentation of bulk equilibrium thermodynamics is completed by studying the properties of the quark-gluon plasma as new state of strongly interacting matter. The final chapters of the book are devoted to more specific topics which arise when nuclear collisions are considered as a tool for the experimental study of QCD thermodynamics.

Introduction to the Physics of Nanoelectronics

Author: Seng Ghee Tan,Mansoor B. A Jalil

Publisher: Elsevier

ISBN: 0857095889

Category: Technology & Engineering

Page: 312

View: 6627

This book provides an introduction to the physics of nanoelectronics, with a focus on the theoretical aspects of nanoscale devices. The book begins with an overview of the mathematics and quantum mechanics pertaining to nanoscale electronics, to facilitate the understanding of subsequent chapters. It goes on to encompass quantum electronics, spintronics, Hall effects, carbon and graphene electronics, and topological physics in nanoscale devices. Theoretical methodology is developed using quantum mechanical and non-equilibrium Green’s function (NEGF) techniques to calculate electronic currents and elucidate their transport properties at the atomic scale. The spin Hall effect is explained and its application to the emerging field of spintronics – where an electron’s spin as well as its charge is utilised – is discussed. Topological dynamics and gauge potential are introduced with the relevant mathematics, and their application in nanoelectronic systems is explained. Graphene, one of the most promising carbon-based nanostructures for nanoelectronics, is also explored. Begins with an overview of the mathematics and quantum mechanics pertaining to nanoscale electronics Encompasses quantum electronics, spintronics, Hall effects, carbon and graphene electronics, and topological physics in nanoscale devices Comprehensively introduces topological dynamics and gauge potential with the relevant mathematics, and extensively discusses their application in nanoelectronic systems

Physics of Neutron Star Interiors

Author: D. Blaschke,N.K. Glendenning,A. Sedrakian

Publisher: Springer Science & Business Media

ISBN: 3540423400

Category: Science

Page: 509

View: 8050

Neutron stars are the densest observable bodies in our universe. Born during the gravitational collapse of luminous stars - a birth heralded by spectacular supernova explosions - they open a window on a world where the state of the matter and the strengths of the fields are anything but ordinary. This book is a collection of pedagogical lectures on the theory of neutron stars, and especially their interiors, at the forefront of current research. It addresses graduate students and researchers alike, and should be particularly suitable as a text bridging the gap between standard textbook material and the research literature.

Neutron Stars: Theory and Observation

Author: J.E Ventura,David Pines

Publisher: Springer Science & Business Media

ISBN: 9780792313977

Category: Science

Page: 592

View: 3831

Some twenty-three years after the discovery of pulsars and their identification as rotating neutron stars, neutron star physics may be regarded as comingofage. Pul sars and accreting neutron stars have now been studied at every wavelength, from the initial radio observations, through optical, X-, and "{-ray, up to the very recent observations in the TeV region, while theorists have studied in some detail relevant physical processes both outside and inside neutron stars. As a result, comparisonof theory with observation provides a test ofour theoretical ideas in fields as diverse as neutron and nuclear matter, superfluidity and superconductivity, the acceleration of high energy particles, and the generation and maintenance of intense magnetic fields. For example, through observations of glitches and post glitch behavior of pulsars, it has become possible to establish the presence ofsuperfluid neutron mat ter in the inner crust of neutron stars, and to determine some of its properties, while neutron stars in compact binary systems offer one ofthe most efficient energy generation mechanisms known. It is in fact the interactive interpretation of these ,diverse pieces of information that can lead to major advances in our understanding of the physics of these exotic objects, and justifies the characterization of neutron stars as hadron physics laboratories.