## Introduction to Probability Models

Author: Sheldon M. Ross

ISBN: 0124081215

Category: Mathematics

Page: 784

View: 6825

Introduction to Probability Models, Eleventh Edition is the latest version of Sheldon Ross's classic bestseller, used extensively by professionals and as the primary text for a first undergraduate course in applied probability. The book introduces the reader to elementary probability theory and stochastic processes, and shows how probability theory can be applied fields such as engineering, computer science, management science, the physical and social sciences, and operations research. The hallmark features of this text have been retained in this eleventh edition: superior writing style; excellent exercises and examples covering the wide breadth of coverage of probability topic; and real-world applications in engineering, science, business and economics. The 65% new chapter material includes coverage of finite capacity queues, insurance risk models, and Markov chains, as well as updated data. The book contains compulsory material for new Exam 3 of the Society of Actuaries including several sections in the new exams. It also presents new applications of probability models in biology and new material on Point Processes, including the Hawkes process. There is a list of commonly used notations and equations, along with an instructor's solutions manual. This text will be a helpful resource for professionals and students in actuarial science, engineering, operations research, and other fields in applied probability. Updated data, and a list of commonly used notations and equations, instructor's solutions manual Offers new applications of probability models in biology and new material on Point Processes, including the Hawkes process Introduces elementary probability theory and stochastic processes, and shows how probability theory can be applied in fields such as engineering, computer science, management science, the physical and social sciences, and operations research Covers finite capacity queues, insurance risk models, and Markov chains Contains compulsory material for new Exam 3 of the Society of Actuaries including several sections in the new exams Appropriate for a full year course, this book is written under the assumption that students are familiar with calculus
Release

## Introduction to Probability Models

Author: Sheldon M. Ross

Publisher: Elsevier

ISBN: 1483276589

Category: Mathematics

Page: 568

View: 966

Introduction to Probability Models, Fifth Edition focuses on different probability models of natural phenomena. This edition includes additional material in Chapters 5 and 10, such as examples relating to analyzing algorithms, minimizing highway encounters, collecting coupons, and tracking the AIDS virus. The arbitrage theorem and its relationship to the duality theorem of linear program are also covered, as well as how the arbitrage theorem leads to the Black-Scholes option pricing formula. Other topics include the Bernoulli random variable, Chapman-Kolmogorov equations, and properties of the exponential distribution. The continuous-time Markov chains, single-server exponential queueing system, variations on Brownian motion; and variance reduction by conditioning are also elaborated. This book is a good reference for students and researchers conducting work on probability models.
Release

## Introduction to Probability Models

Author: Sheldon M. Ross

ISBN: 9780123756879

Category: Mathematics

Page: 800

View: 1590

Introduction to Probability Models, Tenth Edition, provides an introduction to elementary probability theory and stochastic processes. There are two approaches to the study of probability theory. One is heuristic and nonrigorous, and attempts to develop in students an intuitive feel for the subject that enables him or her to think probabilistically. The other approach attempts a rigorous development of probability by using the tools of measure theory. The first approach is employed in this text. The book begins by introducing basic concepts of probability theory, such as the random variable, conditional probability, and conditional expectation. This is followed by discussions of stochastic processes, including Markov chains and Poison processes. The remaining chapters cover queuing, reliability theory, Brownian motion, and simulation. Many examples are worked out throughout the text, along with exercises to be solved by students. This book will be particularly useful to those interested in learning how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. Ideally, this text would be used in a one-year course in probability models, or a one-semester course in introductory probability theory or a course in elementary stochastic processes. New to this Edition: 65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chains Contains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new exams Updated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, and test bank Includes SPSS PASW Modeler and SAS JMP software packages which are widely used in the field Hallmark features: Superior writing style Excellent exercises and examples covering the wide breadth of coverage of probability topics Real-world applications in engineering, science, business and economics
Release

## Introduction to Probability Models, ISE

Author: Sheldon M. Ross

ISBN: 0080920179

Category: Mathematics

Page: 800

View: 9342

Ross's classic bestseller, Introduction to Probability Models, has been used extensively by professionals and as the primary text for a first undergraduate course in applied probability. It provides an introduction to elementary probability theory and stochastic processes, and shows how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries. A new section (3.7) on COMPOUND RANDOM VARIABLES, that can be used to establish a recursive formula for computing probability mass functions for a variety of common compounding distributions. A new section (4.11) on HIDDDEN MARKOV CHAINS, including the forward and backward approaches for computing the joint probability mass function of the signals, as well as the Viterbi algorithm for determining the most likely sequence of states. Simplified Approach for Analyzing Nonhomogeneous Poisson processes Additional results on queues relating to the (a) conditional distribution of the number found by an M/M/1 arrival who spends a time t in the system; (b) inspection paradox for M/M/1 queues (c) M/G/1 queue with server breakdown Many new examples and exercises.
Release

## Introduction to Probability Models, Student Solutions Manual (e-only)

Introduction to Probability Models 10th Edition

Author: Sheldon M Ross

ISBN: 9780123814364

Category: Mathematics

Page: 170

View: 1839

Introduction to Probability Models, Student Solutions Manual (e-only)
Release

## Probability Models for Computer Science

Author: Sheldon M. Ross

Publisher: Taylor & Francis US

ISBN: 9780125980517

Category: Computers

Page: 288

View: 1765

The role of probability in computer science has been growing for years and, in lieu of a tailored textbook, many courses have employed a variety of similar, but not entirely applicable, alternatives. To meet the needs of the computer science graduate student (and the advanced undergraduate), best-selling author Sheldon Ross has developed the premier probability text for aspiring computer scientists involved in computer simulation and modeling. The math is precise and easily understood. As with his other texts, Sheldon Ross presents very clear explanations of concepts and covers those probability models that are most in demand by, and applicable to, computer science and related majors and practitioners. Many interesting examples and exercises have been chosen to illuminate the techniques presented Examples relating to bin packing, sorting algorithms, the find algorithm, random graphs, self-organising list problems, the maximum weighted independent set problem, hashing, probabilistic verification, max SAT problem, queuing networks, distributed workload models, and many othersMany interesting examples and exercises have been chosen to illuminate the techniques presented
Release

## Introduction to Probability and Statistics for Engineers and Scientists

Author: Sheldon M. Ross

ISBN: 0123948428

Category: Mathematics

Page: 686

View: 3756

Introduction to Probability and Statistics for Engineers and Scientists provides a superior introduction to applied probability and statistics for engineering or science majors. Ross emphasizes the manner in which probability yields insight into statistical problems; ultimately resulting in an intuitive understanding of the statistical procedures most often used by practicing engineers and scientists. Real data sets are incorporated in a wide variety of exercises and examples throughout the book, and this emphasis on data motivates the probability coverage. As with the previous editions, Ross' text has tremendously clear exposition, plus real-data examples and exercises throughout the text. Numerous exercises, examples, and applications connect probability theory to everyday statistical problems and situations. Clear exposition by a renowned expert author Real data examples that use significant real data from actual studies across life science, engineering, computing and business End of Chapter review material that emphasizes key ideas as well as the risks associated with practical application of the material 25% New Updated problem sets and applications, that demonstrate updated applications to engineering as well as biological, physical and computer science New additions to proofs in the estimation section New coverage of Pareto and lognormal distributions, prediction intervals, use of dummy variables in multiple regression models, and testing equality of multiple population distributions.
Release

## Applied Probability Models with Optimization Applications

Author: Sheldon M. Ross

Publisher: Courier Corporation

ISBN: 0486318648

Category: Mathematics

Page: 224

View: 2507

Concise advanced-level introduction to stochastic processes that arise in applied probability. Poisson process, renewal theory, Markov chains, Brownian motion, much more. Problems. References. Bibliography. 1970 edition.
Release

## An Introduction to Stochastic Modeling

Author: Howard M. Taylor,Samuel Karlin

ISBN: 1483220443

Category: Mathematics

Page: 578

View: 1212

An Introduction to Stochastic Modeling, Revised Edition provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Release

## Introduction to Stochastic Dynamic Programming

Author: Sheldon M. Ross

ISBN: 1483269094

Category: Mathematics

Page: 178

View: 3772

Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist—providing counterexamples where appropriate—and then presents methods for obtaining such policies when they do. In addition, general areas of application are presented. The final two chapters are concerned with more specialized models. These include stochastic scheduling models and a type of process known as a multiproject bandit. The mathematical prerequisites for this text are relatively few. No prior knowledge of dynamic programming is assumed and only a moderate familiarity with probability— including the use of conditional expectation—is necessary.
Release

## Probability Models

Author: John Haigh

Publisher: Springer Science & Business Media

ISBN: 144715343X

Category: Mathematics

Page: 287

View: 8176

The purpose of this book is to provide a sound introduction to the study of real-world phenomena that possess random variation. It describes how to set up and analyse models of real-life phenomena that involve elements of chance. Motivation comes from everyday experiences of probability, such as that of a dice or cards, the idea of fairness in games of chance, and the random ways in which, say, birthdays are shared or particular events arise. Applications include branching processes, random walks, Markov chains, queues, renewal theory, and Brownian motion. This textbook contains many worked examples and several chapters have been updated and expanded for the second edition. Some mathematical knowledge is assumed. The reader should have the ability to work with unions, intersections and complements of sets; a good facility with calculus, including integration, sequences and series; and appreciation of the logical development of an argument. Probability Models is designed to aid students studying probability as part of an undergraduate course on mathematics or mathematics and statistics.
Release

## Introduction to Reliability Analysis

Probability Models and Statistical Methods

Author: Shelemyahu Zacks

Publisher: Springer Science & Business Media

ISBN: 1461228549

Category: Mathematics

Page: 212

View: 759

Reliability analysis is concerned with the analysis of devices and systems whose individual components are prone to failure. This textbook presents an introduction to reliability analysis of repairable and non-repairable systems. It is based on courses given to both undergraduate and graduate students of engineering and statistics as well as in workshops for professional engineers and scientists. As aresult, the book concentrates on the methodology of the subject and on understanding theoretical results rather than on its theoretical development. An intrinsic aspect of reliability analysis is that the failure of components is best modelled using techniques drawn from probability and statistics. Professor Zacks covers all the basic concepts required from these subjects and covers the main modern reliability analysis techniques thoroughly. These include: the graphical analysis of life data, maximum likelihood estimation and bayesian likelihood estimation. Throughout the emphasis is on the practicalities of the subject with numerous examples drawn from industrial and engineering settings.
Release

## Introductory Statistics

Author: Sheldon M. Ross

ISBN: 012804361X

Category: Mathematics

Page: 828

View: 9990

Introductory Statistics, Fourth Edition, reviews statistical concepts and techniques in a manner that will teach students not only how and when to utilize the statistical procedures developed, but also how to understand why these procedures should be used. The text's main merits are the clarity of presentation, contemporary examples and applications from diverse areas, an explanation of intuition, and the ideas behind the statistical methods. Concepts are motivated, illustrated, and explained in a way that attempts to increase one's intuition. To quote from the preface, it is only when a student develops a feel or intuition for statistics that she or he is really on the path toward making sense of data. Ross achieves this goal through a coherent mix of mathematical analysis, intuitive discussions, and examples. Applications and examples refer to real-world issues, such as gun control, stock price models, health issues, driving age limits, school admission ages, use of helmets, sports, scientific fraud, and many others. Examples relating to data mining techniques using the number of Google queries or Twitter tweets are also considered. For this fourth edition, new topical coverage includes sections on Pareto distribution and the 80-20 rule, Benford's law, added material on odds and joint distributions and correlation, logistic regression, A-B testing, and more modern (big data) examples and exercises. Includes new section on Pareto distribution and the 80-20 rule, Benford’s law, odds, joint distribution and correlation, logistic regression, A-B testing, and examples from the world of analytics and big data Comprehensive edition that includes the most commonly used statistical software packages (SAS, SPSS, Minitab), ISM, SSM, and an online graphing calculator manual Presents a unique, historical perspective, profiling prominent statisticians and historical events to motivate learning by including interest and context Provides exercises and examples that help guide the student towards indpendent learning using real issues and real data, e.g. stock price models, health issues, gender issues, sports, and scientific fraud
Release

## A First Course in Probability

Author: Sheldon M. Ross

Publisher: Pearson College Division

ISBN: 9780321794772

Category: Mathematics

Page: 467

View: 3982

A First Course in Probability, Ninth Edition, features clear and intuitive explanations of the mathematics of probability theory, outstanding problem sets, and a variety of diverse examples and applications. This book is ideal for an upper-level undergraduate or graduate level introduction to probability for math, science, engineering and business students. It assumes a background in elementary calculus.
Release

## A Modern Introduction to Probability and Statistics

Understanding Why and How

Author: F.M. Dekking,C. Kraaikamp,H.P. Lopuhaä,L.E. Meester

Publisher: Springer Science & Business Media

ISBN: 1846281687

Category: Mathematics

Page: 488

View: 9354

Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books
Release

## An Introduction to Probability and Statistical Inference

Author: George G. Roussas

ISBN: 0128004371

Category: Mathematics

Page: 624

View: 4346

Release

## Introduction to Probability with R

Author: Kenneth Baclawski

Publisher: CRC Press

ISBN: 9781420065220

Category: Mathematics

Page: 384

View: 4459

Based on a popular course taught by the late Gian-Carlo Rota of MIT, with many new topics covered as well, Introduction to Probability with R presents R programs and animations to provide an intuitive yet rigorous understanding of how to model natural phenomena from a probabilistic point of view. Although the R programs are small in length, they are just as sophisticated and powerful as longer programs in other languages. This brevity makes it easy for students to become proficient in R. This calculus-based introduction organizes the material around key themes. One of the most important themes centers on viewing probability as a way to look at the world, helping students think and reason probabilistically. The text also shows how to combine and link stochastic processes to form more complex processes that are better models of natural phenomena. In addition, it presents a unified treatment of transforms, such as Laplace, Fourier, and z; the foundations of fundamental stochastic processes using entropy and information; and an introduction to Markov chains from various viewpoints. Each chapter includes a short biographical note about a contributor to probability theory, exercises, and selected answers. The book has an accompanying website with more information.
Release

## Introduction to Probability

Author: Dimitri P. Bertsekas,John N. Tsitsiklis

Publisher: N.A

ISBN: 9781886529236

Category: Mathematics

Page: 528

View: 9142

Release

## Games, Gods and Gambling

The Origins and History of Probability and Statistical Ideas from the Earliest Times to the Newtonian Era

Author: Florence Nightingale David

Publisher: N.A

ISBN: 9781258512644

Category:

Page: 302

View: 5682

Additional Contributors Are Jean Edmiston, E. H. Thorne, And Maxine Merrington.
Release

## Introduction to Matrix Analytic Methods in Stochastic Modeling

Author: G. Latouche,V. Ramaswami

Publisher: SIAM

ISBN: 0898714257

Category: Mathematics

Page: 334

View: 9294

Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.
Release