Introduction to Physics

Mechanics, Hydrodynamics Thermodynamics

Author: P. Frauenfelder,P. Huber

Publisher: Elsevier

ISBN: 1483280853

Category: Science

Page: 602

View: 4193

Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure of the solid .The final chapters consider the laws of the thermodynamic and their applications. This book will prove useful to physicists, scientists, thermodynamics engineers.
Release

Understanding the Universe

An Introduction to Physics and Astrophysics

Author: James B. Seaborn

Publisher: Springer Science & Business Media

ISBN: 1461206898

Category: Science

Page: 304

View: 9279

Intended for undergraduate non-science majors, satisfying a general education requirement or seeking an elective in natural science, this is a physics text, but with the emphasis on topics and applications in astronomy. The perspective is thus different from most undergraduate astronomy courses: rather than discussing what is known about the heavens, this text develops the principles of physics so as to illuminate what we see in the heavens. The fundamental principles governing the behaviour of matter and energy are thus used to study the solar system, the structure and evolution of stars, and the early universe. The first part of the book develops Newtonian mechanics towards an understanding of celestial mechanics, while chapters on electromagnetism and elementary quantum theory lay the foundation of the modern theory of the structure of matter and the role of radiation in the constitution of stars. Kinetic theory and nuclear physics provide the basis for a discussion of stellar structure and evolution, and an examination of red shifts and other observational data provide a basis for discussions of cosmology and cosmogony.
Release

Introduction to Physics and Chemistry of Combustion

Explosion, Flame, Detonation

Author: Michael A. Liberman

Publisher: Springer Science & Business Media

ISBN: 9783540787594

Category: Science

Page: 349

View: 3193

Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and with premixed gas combustion. Premixed gas combustion is of practical importance in engines, modern gas turbine and explosions, where the fuel and air are essentially premixed, and combustion occurs by the propagation of a front separating unburned mixture from fully burned mixture. Since premixed combustion is the most fundamental and potential for practical applications, the emphasis in the present work is be placed on regimes of premixed combustion. This text is intended for graduate students of different specialties, including physics, chemistry, mechanical engineering, computer science, mathematics and astrophysics.
Release

Introduction to Physics

Author: John D. Cutnell,Kenneth W. Johnson,David P. Young (Physics professor),Shane Stadler

Publisher: John Wiley & Sons

ISBN: 9781118651520

Category: Physics

Page: 896

View: 395

Cutnell and Johnson has been the Number one text in the algebra–based physics market for over 20 years. Over 250,000 students have used the book as the equipment they need to build their problem–solving confidence, push their limits, and be successful. The tenth edition continues to offer material to help the development of conceptual understanding, and show the relevance of physics to readers lives and future careers. Helps the reader to first identify the physics concepts, then associate the appropriate mathematical equations, and finally to work out an algebraic solution
Release

Introduction to Physics in Modern Medicine, Second Edition

Author: Suzanne Amador Kane,Nancy Donaldson,Boris Gelman

Publisher: Taylor & Francis

ISBN: 1439894892

Category: Science

Page: 448

View: 9595

From x-rays to lasers to magnetic resonance imaging, developments in basic physics research have been transformed into medical technologies for imaging, surgery and therapy at an ever accelerating pace. Physics has joined with genetics and molecular biology to define much of what is modern in modern medicine. Covering a wide range of applications, Introduction to Physics in Modern Medicine, Second Edition builds on the bestselling original. Based on a course taught by the author, the book provides medical personnel and students with an exploration of the physics-related applications found in state-of-the-art medical centers. Requiring no previous acquaintance with physics, biology, or chemistry and keeping mathematics to a minimum, the application-dedicated chapters adhere to simple and self-contained qualitative explanations that make use of examples and illustrations. With an enhanced emphasis on digital imaging and computers in medicine, the text gives readers a fundamental understanding of the practical application of each concept and the basic science behind it. This book provides medical students with an excellent introduction to how physics is applied in medicine, while also providing students in physics with an introduction to medical physics. Each chapter includes worked examples and a complete list of problems and questions. That so much of the technology discussed in this book was the stuff of dreams just a few years ago, makes this book as fascinating as it is practical, both for those in medicine as well as those in physics who might one day discover that the project they are working on is basis for the next great medical application. This edition: Covers hybrid scanners for cancer imaging and the interplay of molecular medicine with imaging technologies such as MRI, CT and PET Looks at camera pills that can film from the inside upon swallowing and advances in robotic surgery devices Explores Intensity-Modulated Radiation Therapy, proton therapy, and other new forms of cancer treatment Reflects on the use of imaging technologies in developing countries
Release

Pohl's Introduction to Physics

Volume 1: Mechanics, Acoustics and Thermodynamics

Author: Klaus Lüders,Robert O. Pohl

Publisher: Springer

ISBN: 3319400460

Category: Science

Page: 525

View: 841

This classic textbook on experimental physics, written by Robert W. Pohl to accompany his famous lecture courses, served generations of physics and other science majors, not only in his native Germany, and was for many years a standard textbook. Pohl's lucid and memorable style and his consistent use of vivid demonstration experiments made his textbooks unique in their time. This completely revised and updated modern edition retains his style and clarity in an up-to-date format. The accompanying videos document the original demonstrations and add many modern touches, bringing to life the numerous illustrations in the book and providing an instructive and motivating complement to the text. They are linked to the corresponding topics in the text and can be accessed directly online from the e-book version. Volume I covers elementary mechanics, acoustics (vibrations and waves) and thermodynamics.The exercises provide an aid to understanding the material as well as complementary information. This book addresses students of physics and of other natural sciences and engineering, but also teachers and lecturers, who will profit from Pohl's many demonstration experiments, and other interested readers who want to gain an understanding of the fundamentals of physics from an experimental viewpoint.
Release

Introduction to physics

Author: Frank M. Durbin

Publisher: N.A

ISBN: N.A

Category: Science

Page: 780

View: 2098

For college students.
Release

An Introduction to Physics and Technology of Thin Films

Author: Alfred Wagendristel,Youming Wang

Publisher: World Scientific

ISBN: 9789810216160

Category: Science

Page: 147

View: 9253

Based on lecture notes that have been used successfully by the authors for the past 10 years, with revisions made each year, this book is aimed at graduate students as well as professionals and researchers involved in thin film physics and technology. It is concise, comprehensive and well organized. The first part of the book introduces the concept, describes the various deposition procedures and illustrates PVD methods, evaporation and sputtering. The basic physical processes of film formation are then analyzed and formulated, including methods for monitoring and measuring film thickness. This book also shows how the subject matter connects with, relates and applies to other fields. In the second part of the book, 3 special topics ? ferromagnetic films, diffusion in thin films and mechanical properties of thin films ? are discussed.Given its wide scope, this book is relevant not just to those involved in materials science but also to engineers as well.
Release

Introduction to Physics of Elementary Particles

Author: Oleg Mikhilovich Boyarkin

Publisher: Nova Publishers

ISBN: 9781600212000

Category: Science

Page: 244

View: 3355

In this textbook, all known fundamental interactions are considered and the main directions of their unification are reviewed. The basic theoretical ideas and experiments, which permit establishing a quark-lepton level of matter structure are discussed. A general scheme for the theory of interacting fields with the help of the local gauge invariance principle is given. This scheme is used for presentation of the basic aspects of the quantum chromodynamics and electroweak theory of Weinberg-Salam-Glashow. Principles of operation and designs of accelerators, neutrino telescopes, and elementary particle detectors are considered. The modern theory of the Universe evolution is described.
Release

Semiconductor Optoelectronic Devices

Introduction to Physics and Simulation

Author: Joachim Piprek

Publisher: Elsevier

ISBN: 0080469787

Category: Science

Page: 279

View: 8575

Optoelectronics has become an important part of our lives. Wherever light is used to transmit information, tiny semiconductor devices are needed to transfer electrical current into optical signals and vice versa. Examples include light emitting diodes in radios and other appliances, photodetectors in elevator doors and digital cameras, and laser diodes that transmit phone calls through glass fibers. Such optoelectronic devices take advantage of sophisticated interactions between electrons and light. Nanometer scale semiconductor structures are often at the heart of modern optoelectronic devices. Their shrinking size and increasing complexity make computer simulation an important tool to design better devices that meet ever rising perfomance requirements. The current need to apply advanced design software in optoelectronics follows the trend observed in the 1980's with simulation software for silicon devices. Today, software for technology computer-aided design (TCAD) and electronic design automation (EDA) represents a fundamental part of the silicon industry. In optoelectronics, advanced commercial device software has emerged recently and it is expected to play an increasingly important role in the near future. This book will enable students, device engineers, and researchers to more effectively use advanced design software in optoelectronics. Provides fundamental knowledge in semiconductor physics and in electromagnetics, while helping to understand and use advanced device simulation software Demonstrates the combination of measurements and simulations in order to obtain realistic results and provides data on all required material parameters Gives deep insight into the physics of state-of-the-art devices and helps to design and analyze of modern optoelectronic devices
Release

Physics of Everyday Phenomena

Author: W. Thomas Griffith

Publisher: McGraw-Hill Higher Education

ISBN: 007759634X

Category: Science

Page: 544

View: 4745

The Physics of Everyday Phenomena, Eighth Edition, introduces students to the basic concepts of physics using examples of common occurrences in everyday life. Intended for use in a one-semester or two-semester course in conceptual physics, this book is written in a narrative style, frequently using questions designed to draw the reader into a dialogue about the ideas of physics. This inclusive style allows the book to be used by anyone interested in exploring the nature of physics and explanations of everyday physical phenomena. Beginning students will benefit from the large number of student aids and the reduced math content. Professors will appreciate the organization of the material and the wealth of pedagogical tools.
Release

Introduction to the Physics of Electron Emission

Author: Kevin L. Jensen

Publisher: John Wiley & Sons

ISBN: 1119051762

Category: Science

Page: 712

View: 8436

A practical, in-depth description of the physics behind electron emission physics and its usage in science and technology Electron emission is both a fundamental phenomenon and an enabling component that lies at the very heart of modern science and technology. Written by a recognized authority in the field, with expertise in both electron emission physics and electron beam physics, An Introduction to Electron Emission provides an in-depth look at the physics behind thermal, field, photo, and secondary electron emission mechanisms, how that physics affects the beams that result through space charge and emittance growth, and explores the physics behind their utilization in an array of applications. The book addresses mathematical and numerical methods underlying electron emission, describing where the equations originated, how they are related, and how they may be correctly used to model actual sources for devices using electron beams. Writing for the beam physics and solid state communities, the author explores applications of electron emission methodology to solid state, statistical, and quantum mechanical ideas and concepts related to simulations of electron beams to condensed matter, solid state and fabrication communities. Provides an extensive description of the physics behind four electron emission mechanisms—field, photo, and secondary, and how that physics relates to factors such as space charge and emittance that affect electron beams. Introduces readers to mathematical and numerical methods, their origins, and how they may be correctly used to model actual sources for devices using electron beams Demonstrates applications of electron methodology as well as quantum mechanical concepts related to simulations of electron beams to solid state design and manufacture Designed to function as both a graduate-level text and a reference for research professionals Introduction to the Physics of Electron Emission is a valuable learning tool for postgraduates studying quantum mechanics, statistical mechanics, solid state physics, electron transport, and beam physics. It is also an indispensable resource for academic researchers and professionals who use electron sources, model electron emission, develop cathode technologies, or utilize electron beams.
Release