Introduction to Linear Regression Analysis

Author: Douglas C. Montgomery,Elizabeth A. Peck,G. Geoffrey Vining

Publisher: John Wiley & Sons

ISBN: 1119180171

Category: Mathematics

Page: 672

View: 8651

Praise for the Fourth Edition "As with previous editions, the authors have produced a leadingtextbook on regression." —Journal of the American Statistical Association A comprehensive and up-to-date introduction to thefundamentals of regression analysis Introduction to Linear Regression Analysis, Fifth Editioncontinues to present both the conventional and less common uses oflinear regression in today’s cutting-edge scientificresearch. The authors blend both theory and application to equipreaders with an understanding of the basic principles needed toapply regression model-building techniques in various fields ofstudy, including engineering, management, and the healthsciences. Following a general introduction to regression modeling,including typical applications, a host of technical tools areoutlined such as basic inference procedures, introductory aspectsof model adequacy checking, and polynomial regression models andtheir variations. The book then discusses how transformations andweighted least squares can be used to resolve problems of modelinadequacy and also how to deal with influential observations. TheFifth Edition features numerous newly added topics,including: A chapter on regression analysis of time series data thatpresents the Durbin-Watson test and other techniques for detectingautocorrelation as well as parameter estimation in time seriesregression models Regression models with random effects in addition to adiscussion on subsampling and the importance of the mixedmodel Tests on individual regression coefficients and subsets ofcoefficients Examples of current uses of simple linear regression models andthe use of multiple regression models for understanding patientsatisfaction data. In addition to Minitab, SAS, and S-PLUS, the authors haveincorporated JMP and the freely available R software to illustratethe discussed techniques and procedures in this new edition.Numerous exercises have been added throughout, allowing readers totest their understanding of the material. Introduction to Linear Regression Analysis, Fifth Editionis an excellent book for statistics and engineering courses onregression at the upper-undergraduate and graduate levels. The bookalso serves as a valuable, robust resource for professionals in thefields of engineering, life and biological sciences, and the socialsciences.
Release

Introduction to linear regression analysis

Author: Douglas C. Montgomery,Elizabeth A. Peck,G. Geoffrey Vining

Publisher: Wiley-Interscience

ISBN: 9780471315650

Category: Mathematics

Page: 641

View: 3325

A comprehensive and thoroughly up-to-date look at regression analysis-still the most widely used technique in statistics today As basic to statistics as the Pythagorean theorem is to geometry, regression analysis is a statistical technique for investigating and modeling the relationship between variables. With far-reaching applications in almost every field, regression analysis is used in engineering, the physical and chemical sciences, economics, management, life and biological sciences, and the social sciences. Clearly balancing theory with applications, Introduction to Linear Regression Analysis describes conventional uses of the technique, as well as less common ones, placing linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. Succeeding chapters include detailed coverage of: * Indicator variables, making the connection between regression and analysis-of-variance modelss * Variable selection and model-building techniques * The multicollinearity problem, including its sources, harmful effects, diagnostics, and remedial measures * Robust regression techniques, including M-estimators, Least Median of Squares, and S-estimation * Generalized linear models The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation. Topics not usually found in a linear regression textbook, such as nonlinear regression and generalized linear models, yet critical to engineering students and professionals, have also been included. The new critical role of the computer in regression analysis is reflected in the book's expanded discussion of regression diagnostics, where major analytical procedures now available in contemporary software packages, such as SAS, Minitab, and S-Plus, are detailed. The Appendix now includes ample background material on the theory of linear models underlying regression analysis. Data sets from the book, extensive problem solutions, and software hints are available on the ftp site. For other Wiley books by Doug Montgomery, visit our website at www.wiley.com/college/montgomery.
Release

Solutions Manual to accompany Introduction to Linear Regression Analysis

Author: Douglas C. Montgomery,Elizabeth A. Peck,G. Geoffrey Vining

Publisher: John Wiley & Sons

ISBN: 1118548507

Category: Mathematics

Page: 164

View: 4035

As the Solutions Manual, this book is meant to accompany the main title, Introduction to Linear Regression Analysis, Fifth Edition. Clearly balancing theory with applications, this book describes both the conventional and less common uses of linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation.
Release

Introduction to Linear Regression Analysis, Student Solutions Manual

Author: Douglas C. Montgomery,Elizabeth A. Peck,G. Geoffrey Vining

Publisher: Wiley-Interscience

ISBN: 9780471413769

Category: Mathematics

Page: 140

View: 9298

A comprehensive and thoroughly up-to-date look at regression analysis-still the most widely used technique in statistics today As basic to statistics as the Pythagorean theorem is to geometry, regression analysis is a statistical technique for investigating and modeling the relationship between variables. With far-reaching applications in almost every field, regression analysis is used in engineering, the physical and chemical sciences, economics, management, life and biological sciences, and the social sciences. Clearly balancing theory with applications, Introduction to Linear Regression Analysis describes conventional uses of the technique, as well as less common ones, placing linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. Succeeding chapters include detailed coverage of: * Indicator variables, making the connection between regression and analysis-of-variance modelss * Variable selection and model-building techniques * The multicollinearity problem, including its sources, harmful effects, diagnostics, and remedial measures * Robust regression techniques, including M-estimators, Least Median of Squares, and S-estimation * Generalized linear models The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation. Topics not usually found in a linear regression textbook, such as nonlinear regression and generalized linear models, yet critical to engineering students and professionals, have also been included. The new critical role of the computer in regression analysis is reflected in the book's expanded discussion of regression diagnostics, where major analytical procedures now available in contemporary software packages, such as SAS, Minitab, and S-Plus, are detailed. The Appendix now includes ample background material on the theory of linear models underlying regression analysis. Data sets from the book, extensive problem solutions, and software hints are available on the ftp site. For other Wiley books by Doug Montgomery, visit our website at www.wiley.com/college/montgomery.
Release

INTRODUCTION TO LINEAR REGRESSION ANALYSIS, 3RD ED

Author: Douglas C. Montgomery,Elizabeth A. Peck,G. Geoffrey Vining

Publisher: N.A

ISBN: 9788126510474

Category: Regression analysis

Page: 672

View: 6130

Market_Desc: · Practitioners in diverse fields, including engineers, who use regression analysis techniques Special Features: A revised and updated edition of a book with a solid reputation for its excellent treatment of the theory and applications of linear regression analysis, integrating standard topics with some of the newer and less conventional areas. The new edition features complete reorganization of the material since the previous edition was published in 1992, allowing for a more logical flow of bite-sized material while keeping the size of the book manageable. Modern topics added include classification and regression analysis (CART), neural networks, and the bootstrap, among others.· Expanded topics include robust regression, nonlinear regression, GLMs, and others· Problems and data sets have been extensively revised· Remains oriented toward the analyst who uses computers for problem solution· Authors have greatly expanded the discussion of regression diagnostics, illustrating all of the major procedures available in contemporary software packages· An accompanying Web site contains data sets, extensive problem solutions, and software hints About The Book: This book is intended as a text for a basic course in linear regression analysis. It contains the standard topics as well as some of the newer and more unconventional ones and blends both theory and application so that the reader will obtain and understanding of the basic principles necessary to apply regression methods in a variety of practical settings.
Release

Introduction to Regression Analysis

Author: Michael A. Golberg,Hokwon A. Cho

Publisher: WIT Press

ISBN: 1853126241

Category: Mathematics

Page: 436

View: 4037

In order to apply regression analysis effectively, it is necessary to understand both the underlying theory and its practical application. This book explores conventional topics as well as recent practical developments, linking theory with application. Intended to continue from where most basic statistics texts end, it is designed primarily for advanced undergraduates, graduate students and researchers in various fields of engineering, chemical and physical sciences, mathematical sciences and statistics.
Release

Introduction to Linear Regression Analysis, Fourth Edition Solutions Set

Author: Douglas C. Montgomery

Publisher: Wiley

ISBN: 9780470258309

Category: Mathematics

Page: 612

View: 2817

This set includes the text Introduction to Linear Regression Analysis, 4th Edition by Dougla C. Montgomery, Elizabeth A. Peck and G. Geoffrey Vining and the Introduction to Linear Regression Analysis, Student Solutions Manual , 4th Edition.
Release

Introduction to Linear Regression Analysis

Author: CTI Reviews

Publisher: Cram101 Textbook Reviews

ISBN: 1497015154

Category: Education

Page: 25

View: 3859

Facts101 is your complete guide to Introduction to Linear Regression Analysis. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.
Release

Introduction to Time Series Analysis and Forecasting

Author: Douglas C. Montgomery,Cheryl L. Jennings,Murat Kulahci

Publisher: John Wiley & Sons

ISBN: 1118211502

Category: Mathematics

Page: 472

View: 5091

An accessible introduction to the most current thinking in and practicality of forecasting techniques in the context of time-oriented data. Analyzing time-oriented data and forecasting are among the most important problems that analysts face across many fields, ranging from finance and economics to production operations and the natural sciences. As a result, there is a widespread need for large groups of people in a variety of fields to understand the basic concepts of time series analysis and forecasting. Introduction to Time Series Analysis and Forecasting presents the time series analysis branch of applied statistics as the underlying methodology for developing practical forecasts, and it also bridges the gap between theory and practice by equipping readers with the tools needed to analyze time-oriented data and construct useful, short- to medium-term, statistically based forecasts. Seven easy-to-follow chapters provide intuitive explanations and in-depth coverage of key forecasting topics, including: Regression-based methods, heuristic smoothing methods, and general time series models Basic statistical tools used in analyzing time series data Metrics for evaluating forecast errors and methods for evaluating and tracking forecasting performance over time Cross-section and time series regression data, least squares and maximum likelihood model fitting, model adequacy checking, prediction intervals, and weighted and generalized least squares Exponential smoothing techniques for time series with polynomial components and seasonal data Forecasting and prediction interval construction with a discussion on transfer function models as well as intervention modeling and analysis Multivariate time series problems, ARCH and GARCH models, and combinations of forecasts The ARIMA model approach with a discussion on how to identify and fit these models for non-seasonal and seasonal time series The intricate role of computer software in successful time series analysis is acknowledged with the use of Minitab, JMP, and SAS software applications, which illustrate how the methods are imple-mented in practice. An extensive FTP site is available for readers to obtain data sets, Microsoft Office PowerPoint slides, and selected answers to problems in the book. Requiring only a basic working knowledge of statistics and complete with exercises at the end of each chapter as well as examples from a wide array of fields, Introduction to Time Series Analysis and Forecasting is an ideal text for forecasting and time series courses at the advanced undergraduate and beginning graduate levels. The book also serves as an indispensable reference for practitioners in business, economics, engineering, statistics, mathematics, and the social, environmental, and life sciences.
Release

An Introduction to Statistical Methods and Data Analysis

Author: Lyman Ott

Publisher: Arden Shakespeare

ISBN: N.A

Category: Mathematical statistics

Page: 775

View: 6140

What is statistics? Data description; Probability and probability distributions; Inferences about; Catagorical data; Inferences about population variances; Linear regression and correlation; Inferences related to linear regression and correlation; Introduction to the analysis of variance; Multiple comparisons; Multiple regression and the general linear model; More on multiple regression; Analysis of variance for some standard experimental designs; Analysis of variance for some unbalanced designs; Analysis of variance for some fixed-random and mixed effects models; The analysis of covariance; Data management.
Release

Generalized Linear Models

with Applications in Engineering and the Sciences

Author: Raymond H. Myers,Douglas C. Montgomery,G. Geoffrey Vining,Timothy J. Robinson

Publisher: John Wiley & Sons

ISBN: 0470556978

Category: Mathematics

Page: 544

View: 4777

Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities." —Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Maintaining the same nontechnical approach as its predecessor, this update has been thoroughly extended to include the latest developments, relevant computational approaches, and modern examples from the fields of engineering and physical sciences. This new edition maintains its accessible approach to the topic by reviewing the various types of problems that support the use of GLMs and providing an overview of the basic, related concepts such as multiple linear regression, nonlinear regression, least squares, and the maximum likelihood estimation procedure. Incorporating the latest developments, new features of this Second Edition include: A new chapter on random effects and designs for GLMs A thoroughly revised chapter on logistic and Poisson regression, now with additional results on goodness of fit testing, nominal and ordinal responses, and overdispersion A new emphasis on GLM design, with added sections on designs for regression models and optimal designs for nonlinear regression models Expanded discussion of weighted least squares, including examples that illustrate how to estimate the weights Illustrations of R code to perform GLM analysis The authors demonstrate the diverse applications of GLMs through numerous examples, from classical applications in the fields of biology and biopharmaceuticals to more modern examples related to engineering and quality assurance. The Second Edition has been designed to demonstrate the growing computational nature of GLMs, as SAS®, Minitab®, JMP®, and R software packages are used throughout the book to demonstrate fitting and analysis of generalized linear models, perform inference, and conduct diagnostic checking. Numerous figures and screen shots illustrating computer output are provided, and a related FTP site houses supplementary material, including computer commands and additional data sets. Generalized Linear Models, Second Edition is an excellent book for courses on regression analysis and regression modeling at the upper-undergraduate and graduate level. It also serves as a valuable reference for engineers, scientists, and statisticians who must understand and apply GLMs in their work.
Release

Einführung in Statistik und Messwertanalyse für Physiker

Monographie

Author: G. Bohm,G. Zech

Publisher: N.A

ISBN: 9783540257592

Category:

Page: 400

View: 3055

Die Einf]hrung in die Statistik und Messwertanalyse f]r Physiker richtet sich weniger an mathematischen \berlegungen aus, sondern stellt die praktische Anwendung in den Vordergrund und schdrft die Intuition experimentelle Ergebnisse richtig einzuschdtzen. Zahlreiche ausf]hrlich betrachtete Beispiele dienen dazu, hdufig bei der Datenanalyse gemachte Fehler zu vermeiden (unsinnige Anwendung des Chi-Quadrattests, Funktionenanpassung bei falscher Parametrisierung, Entfaltung mit willk]rlicher Regularisierung). Ein besonderes Augenmerk wird auf den Vergleich von Daten mit Monte-Carlo-Simulationen gelenkt. Moderne Experimente kommen nicht ohne Simulation aus. Deshalb ist es wichtig zu wissen, wie Parameteranpassungen und Entfaltungen in diesem Fall durchgef]rt werden. Au_erdem werden den Studierenden moderne Entwicklungen der Statistik nahegebracht, die in dlteren Lehrb]chern nicht behandelt werden.
Release

An Introduction to Regression Graphics

Author: R. Dennis Cook,Sanford Weisberg

Publisher: John Wiley & Sons

ISBN: 0470317701

Category: Mathematics

Page: 280

View: 7989

Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.
Release

Introduction to Statistics and Econometrics

Author: Takeshi Amemiya

Publisher: Harvard University Press

ISBN: 9780674462250

Category: Business & Economics

Page: 368

View: 3862

This outstanding text by a foremost econometrician combines instruction in probability and statistics with econometrics in a rigorous but relatively nontechnical manner. Unlike many statistics texts, it discusses regression analysis in depth. And unlike many econometrics texts, it offers a thorough treatment of statistics. Although its only mathematical requirement is multivariate calculus, it challenges the student to think deeply about basic concepts. The coverage of probability and statistics includes best prediction and best linear prediction, the joint distribution of a continuous and discrete random variable, large sample theory, and the properties of the maximum likelihood estimator. Exercises at the end of each chapter reinforce the many illustrative examples and diagrams. Believing that students should acquire the habit of questioning conventional statistical techniques, Takeshi Amemiya discusses the problem of choosing estimators and compares various criteria for ranking them. He also evaluates classical hypothesis testing critically, giving the realistic case of testing a composite null against a composite alternative. He frequently adopts a Bayesian approach because it provides a useful pedagogical framework for discussing many fundamental issues in statistical inference. Turning to regression, Amemiya presents the classical bivariate model in the conventional summation notation. He follows with a brief introduction to matrix analysis and multiple regression in matrix notation. Finally, he describes various generalizations of the classical regression model and certain other statistical models extensively used in econometrics and other applications in social science.
Release

Introductory Statistics with R

Author: Peter Dalgaard

Publisher: Springer Science & Business Media

ISBN: 9780387790534

Category: Mathematics

Page: 364

View: 8510

This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.
Release

Introduction to Nonparametric Regression

Author: K. Takezawa

Publisher: John Wiley & Sons

ISBN: 0471771449

Category: Mathematics

Page: 640

View: 4445

An easy-to-grasp introduction to nonparametric regression This book's straightforward, step-by-step approach provides anexcellent introduction to the field for novices of nonparametricregression. Introduction to Nonparametric Regression clearlyexplains the basic concepts underlying nonparametric regression andfeatures: * Thorough explanations of various techniques, which avoid complexmathematics and excessive abstract theory to help readersintuitively grasp the value of nonparametric regressionmethods * Statistical techniques accompanied by clear numerical examplesthat further assist readers in developing and implementing theirown solutions * Mathematical equations that are accompanied by a clearexplanation of how the equation was derived The first chapter leads with a compelling argument for studyingnonparametric regression and sets the stage for more advanceddiscussions. In addition to covering standard topics, such askernel and spline methods, the book provides in-depth coverage ofthe smoothing of histograms, a topic generally not covered incomparable texts. With a learning-by-doing approach, each topical chapter includesthorough S-Plus? examples that allow readers to duplicate the sameresults described in the chapter. A separate appendix is devoted tothe conversion of S-Plus objects to R objects. In addition, eachchapter ends with a set of problems that test readers' grasp of keyconcepts and techniques and also prepares them for more advancedtopics. This book is recommended as a textbook for undergraduate andgraduate courses in nonparametric regression. Only a basicknowledge of linear algebra and statistics is required. Inaddition, this is an excellent resource for researchers andengineers in such fields as pattern recognition, speechunderstanding, and data mining. Practitioners who rely onnonparametric regression for analyzing data in the physical,biological, and social sciences, as well as in finance andeconomics, will find this an unparalleled resource.
Release

Introduction to Statistics and Data Analysis

With Exercises, Solutions and Applications in R

Author: Christian Heumann,Michael Schomaker,Shalabh

Publisher: Springer

ISBN: 3319461621

Category: Mathematics

Page: 456

View: 4764

This introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. In the experimental sciences and interdisciplinary research, data analysis has become an integral part of any scientific study. Issues such as judging the credibility of data, analyzing the data, evaluating the reliability of the obtained results and finally drawing the correct and appropriate conclusions from the results are vital. The text is primarily intended for undergraduate students in disciplines like business administration, the social sciences, medicine, politics, macroeconomics, etc. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R as well as supplementary material that will enable the reader to quickly adapt all methods to their own applications.
Release