Fourier Series, Transforms, and Boundary Value Problems

Second Edition

Author: J. Ray Hanna,John H. Rowland

Publisher: Courier Corporation

ISBN: 0486466736

Category: Mathematics

Page: 354

View: 9347

This volume introduces Fourier and transform methods for solutions to boundary value problems associated with natural phenomena. Unlike most treatments, it emphasizes basic concepts and techniques rather than theory. Many of the exercises include solutions, with detailed outlines that make it easy to follow the appropriate sequence of steps. 1990 edition.

Partial Differential Equations with Fourier Series and Boundary Value Problems

Third Edition

Author: Nakhle H. Asmar

Publisher: Courier Dover Publications

ISBN: 0486820831

Category: Mathematics

Page: 816

View: 4687

This text provides an introduction to partial differential equations and boundary value problems, including Fourier series. The treatment offers students a smooth transition from a course in elementary ordinary differential equations to more advanced topics in a first course in partial differential equations. This widely adopted and successful book also serves as a valuable reference for engineers and other professionals. The approach emphasizes applications, with particular stress on physics and engineering applications. Rich in proofs and examples, the treatment features many exercises in each section. Relevant Mathematica files are available for download from author Nakhlé Asmar's website; however, the book is completely usable without computer access. The Students' Solutions Manual can be downloaded for free from the Dover website, and the Instructor's Solutions Manual is available upon request for professors and potential teachers. The text is suitable for undergraduates in mathematics, physics, engineering, and other fields who have completed a course in ordinary differential equations.

Fourier Series and Boundary Value Problems

Author: James Ward Brown,Ruel Vance Churchill

Publisher: McGraw-Hill Science/Engineering/Math

ISBN: 9780071086158

Category: Boundary value problems

Page: 400

View: 2467

The text is made up of Thermodynamics, Heat Transfer and Fluids. Like all the other Cengel texts, it uses a similar pedagogical approach, by using familiar everyday examples followed by theory and analysis.

Applied Partial Differential Equations

With Fourier Series and Boundary Value Problems

Author: Richard Haberman

Publisher: Pearson College Division

ISBN: 9780321797056

Category: Mathematics

Page: 756

View: 6434

Normal 0 false false false This book emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for readers interested in science, engineering, and applied mathematics.

Boundary Value Problems

Author: David L. Powers

Publisher: Elsevier

ISBN: 1483269787

Category: Mathematics

Page: 366

View: 2849

Boundary Value Problems is a text material on partial differential equations that teaches solutions of boundary value problems. The book also aims to build up intuition about how the solution of a problem should behave. The text consists of seven chapters. Chapter 1 covers the important topics of Fourier Series and Integrals. The second chapter deals with the heat equation, introducing separation of variables. Material on boundary conditions and Sturm-Liouville systems is included here. Chapter 3 presents the wave equation; estimation of eigenvalues by the Rayleigh quotient is mentioned briefly. The potential equation is the topic of Chapter 4, which closes with a section on classification of partial differential equations. Chapter 5 briefly covers multidimensional problems and special functions. The last two chapters, Laplace Transforms and Numerical Methods, are discussed in detail. The book is intended for third and fourth year physics and engineering students.

Ordinary and Partial Differential Equations

With Special Functions, Fourier Series, and Boundary Value Problems

Author: Ravi P. Agarwal,Donal O'Regan

Publisher: Springer Science & Business Media

ISBN: 0387791469

Category: Mathematics

Page: 410

View: 6150

In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.

Fourier Analysis and Boundary Value Problems

Author: Enrique A. Gonzalez-Velasco

Publisher: Elsevier

ISBN: 9780080531939

Category: Mathematics

Page: 551

View: 7188

Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics. A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field. Topics are covered from a historical perspective with biographical information on key contributors to the field The text contains more than 500 exercises Includes practical applications of the equations to problems in both engineering and physics

Elementary Applied Partial Differential Equations

With Fourier Series and Boundary Value Problems

Author: Richard Haberman

Publisher: N.A

ISBN: 9780132638074

Category: Mathematics

Page: 736

View: 7342

KEY BENEFIT Emphasizing physical interpretations of mathematical solutions, this book introduces applied mathematics and presents partial differential equations. KEY TOPICS Leading readers from simple exercises through increasingly powerful mathematical techniques, this book discusses hear flow and vibrating strings and membranes, for a better understand of the relationship between mathematics and physical problems. It also emphasizes problem solving and provides a thorough approach to solutions. The third edition of , Elementary Applied Partial Differential Equations; With Fourier Series and Boundary Value Problems has been revised to include a new chapter covering dispersive waves. It also includes new sections covering fluid flow past a circular cylinder; reflection and refraction of light and sound waves; the finite element method; partial differential equations with spherical geometry; eigenvalue problems with a continuous and discrete spectrum; and first-order nonlinear partial differential equations. An essential reference for any technical or mathematics professional.

Partial Differential Equations and Boundary-value Problems with Applications

Author: Mark A. Pinsky

Publisher: American Mathematical Soc.

ISBN: 0821868896

Category: Mathematics

Page: 526

View: 5210

Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.

Fourier Series and Numerical Methods for Partial Differential Equations

Author: Richard Bernatz

Publisher: John Wiley & Sons

ISBN: 9780470651377

Category: Mathematics

Page: 332

View: 3485

The importance of partial differential equations (PDEs) in modeling phenomena in engineering as well as in the physical, natural, and social sciences is well known by students and practitioners in these fields. Striking a balance between theory and applications, Fourier Series and Numerical Methods for Partial Differential Equations presents an introduction to the analytical and numerical methods that are essential for working with partial differential equations. Combining methodologies from calculus, introductory linear algebra, and ordinary differential equations (ODEs), the book strengthens and extends readers' knowledge of the power of linear spaces and linear transformations for purposes of understanding and solving a wide range of PDEs. The book begins with an introduction to the general terminology and topics related to PDEs, including the notion of initial and boundary value problems and also various solution techniques. Subsequent chapters explore: The solution process for Sturm-Liouville boundary value ODE problems and a Fourier series representation of the solution of initial boundary value problems in PDEs The concept of completeness, which introduces readers to Hilbert spaces The application of Laplace transforms and Duhamel's theorem to solve time-dependent boundary conditions The finite element method, using finite dimensional subspaces The finite analytic method with applications of the Fourier series methodology to linear version of non-linear PDEs Throughout the book, the author incorporates his own class-tested material, ensuring an accessible and easy-to-follow presentation that helps readers connect presented objectives with relevant applications to their own work. Maple is used throughout to solve many exercises, and a related Web site features Maple worksheets for readers to use when working with the book's one- and multi-dimensional problems. Fourier Series and Numerical Methods for Partial Differential Equations is an ideal book for courses on applied mathematics and partial differential equations at the upper-undergraduate and graduate levels. It is also a reliable resource for researchers and practitioners in the fields of mathematics, science, and engineering who work with mathematical modeling of physical phenomena, including diffusion and wave aspects.

Fourier Series and Orthogonal Polynomials

Author: Dunham Jackson

Publisher: Courier Corporation

ISBN: 9780486438085

Category: Mathematics

Page: 234

View: 2935

This text illustrates the fundamental simplicity of the properties of orthogonal functions and their developments in related series. Begins with a definition and explanation of the elements of Fourier series, and examines Legendre polynomials and Bessel functions. Also includes Pearson frequency functions and chapters on orthogonal, Jacobi, Hermite, and Laguerre polynomials, more. 1941 edition.

Partielle Differentialgleichungen

Eine Einführung

Author: Walter A. Strauss

Publisher: Springer-Verlag

ISBN: 366312486X

Category: Mathematics

Page: 458

View: 5641

Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

Introductory Differential Equations

with Boundary Value Problems

Author: Martha L. L. Abell,James P. Braselton

Publisher: Academic Press

ISBN: 0080958451

Category: Mathematics

Page: 744

View: 9259

This text is for courses that are typically called (Introductory) Differential Equations, (Introductory) Partial Differential Equations, Applied Mathematics, Fourier Series and Boundary Value Problems. The text is appropriate for two semester courses: the first typically emphasizes ordinary differential equations and their applications while the second emphasizes special techniques (like Laplace transforms) and partial differential equations. The texts follows a "traditional" curriculum and takes the "traditional" (rather than "dynamical systems") approach. Introductory Differential Equations is a text that follows a traditional approach and is appropriate for a first course in ordinary differential equations (including Laplace transforms) and a second course in Fourier series and boundary value problems. Note that some schools might prefer to move the Laplace transform material to the second course, which is why we have placed the chapter on Laplace transforms in its location in the text. Ancillaries like Differential Equations with Mathematica and/or Differential Equations with Maple would be recommended and/or required ancillaries depending on the school, course, or instructor. *Technology Icons These icons highlight text that is intended to alert students that technology may be used intelligently to solve a problem, encouraging logical thinking and application * Think About It Icons and Examples Examples that end in a question encourage students to think critically about what to do next, whether it is to use technology or focus on a graph to determine an outcome *Differential Equations at Work These are projects requiring students to think critically by having students answer questions based on different conditions, thus engaging students