Fluid Mechanics

Author: Frank M. White

Publisher: N.A

ISBN: 9780071286466

Category: Fluid mechanics

Page: 864

View: 9127

Whites Fluid Mechanics sixth edition will continue the text's tradition of excellent problems of different types, precision and accuracy, and good application of concepts to engineering. The new 6th edition will feature the best general problem-solving approach to date, presented at the start of the book and carefully integrated in all examples. Students can progress from general ones to those involving design, multiple steps and computer usage. Word problems are included to build readers' conceptual understanding of the subject, and FE Exam problems (in multiple-choice format) are included.
Release

Fluid Mechanics

Author: Frank Mangrom White,Rhim Yoon Chul

Publisher: N.A

ISBN: 9789814720175

Category: Fluid mechanics

Page: 773

View: 9693

Release

Fluid Mechanics

Author: Pijush K. Kundu,Ira M. Cohen,David R Dowling

Publisher: Academic Press

ISBN: 0124071511

Category: Science

Page: 928

View: 5517

The classic textbook on fluid mechanics is revised and updated by Dr. David Dowling to better illustrate this important subject for modern students. With topics and concepts presented in a clear and accessible way, Fluid Mechanics guides students from the fundamentals to the analysis and application of fluid mechanics, including compressible flow and such diverse applications as aerodynamics and geophysical fluid mechanics. Its broad and deep coverage is ideal for both a first or second course in fluid dynamics at the graduate or advanced undergraduate level, and is well-suited to the needs of modern scientists, engineers, mathematicians, and others seeking fluid mechanics knowledge. Over 100 new examples designed to illustrate the application of the various concepts and equations featured in the text A completely new chapter on computational fluid dynamics (CFD) authored by Prof. Gretar Tryggvason of the University of Notre Dame. This new CFD chapter includes sample MatlabTM codes and 20 exercises New material on elementary kinetic theory, non-Newtonian constitutive relationships, internal and external rough-wall turbulent flows, Reynolds-stress closure models, acoustic source terms, and unsteady one-dimensional gas dynamics Plus 110 new exercises and nearly 100 new figures
Release

Finite Elemente Analyse für Ingenieure

Grundlagen und praktische Anwendungen mit Z88Aurora

Author: Frank Rieg,Reinhard Hackenschmidt,Bettina Alber-Laukant

Publisher: Carl Hanser Verlag GmbH Co KG

ISBN: 3446443185

Category: Technology & Engineering

Page: 735

View: 8165

Inhaltsbeschreibung folgt
Release

Fluid Mechanics

Author: John F. Douglas

Publisher: N.A

ISBN: 9780273717720

Category: Science

Page: 1012

View: 6905

The sixth edition of this established text provides an excellent and comprehensive treatment of fluid mechanics that is concisely written and supported by numerous worked examples. This revision of a classic text presents relevant material for mechanical and civil engineers, as well as energy and environmental services engineers. It recognises the evolution of the subject and provides thorough coverage of both established theory and emerging topics. Fluid Mechanics is ideal for use throughout a first degree course in all engineering disciplines where a good understanding of the subject is required. It is also suitable for conversion MSc courses requiring a fundamental treatment of Fluid Mechanics and will be a valuable resource for specialist Continuing Professional Development courses, including those offered by distance learning.
Release

Fluid Mechanics

Worked Examples for Engineers

Author: Carl Schaschke

Publisher: IChemE

ISBN: 9780852954980

Category: Engineering mathematics

Page: 300

View: 3374

This is a collection of problems and solutions in fluid mechanics for students of all engineering disciplines. The text is intended to support undergraduate courses and be useful to academic tutors in supervising design projects.
Release

Strömungsmechanik A-Z

Eine systematische Einordnung von Begriffen und Konzepten der Strömungsmechanik

Author: Heinz Herwig

Publisher: Springer-Verlag

ISBN: 9783528039745

Category: Science

Page: 451

View: 9024

In diesem Buch werden die etwa 250 wichtigsten Begriffe, Größen und Konzepte der Strömungsmechanik fundiert und systematisch dargestellt. Im Anschluss an die Definition werden wichtige Formeln, deren Bedeutung und Dimension sowie der physikalische Hintergrund und Kontext erläutert. Wichtige Anwendungen und Beispiele aus der Technik veranschaulichen die theoretischen Inhalte. Am Ende jedes Beitrags wird auf weiterführende Literatur verwiesen. Es eignet sich sowohl für in der Praxis stehende Ingenieure als auch für Studierende technischer Fachrichtungen zur Vorbereitung auf mündliche Prüfungen.
Release

Introduction to Food Engineering

Author: R Paul Singh,R. Paul Singh,Dennis R. Heldman

Publisher: Academic Press

ISBN: 9780080919621

Category: Technology & Engineering

Page: 864

View: 4010

This fourth edition of this successful textbook succinctly presents the engineering concepts and unit operations used in food processing, in a unique blend of principles with applications. Depth of coverage is very high. The authors use their many years of teaching to present food engineering concepts in a logical progression that covers the standard course curriculum. Both are specialists in engineering and world-renowned. Chapters describe the application of a particular principle followed by the quantitative relationships that define the related processes, solved examples and problems to test understanding. New chapters on: -Supplemental processes including filtration, sedimentation, centrifugation, and mixing -Extrusion processes for foods -Packaging concepts and shelf life of foods Expanded information on Emerging technologies, such as high pressure and pulsed electric field Transport of granular foods and powders Process controls and measurements Design of plate heat exchangers Impact of fouling in heat transfer processes Use of dimensional analysis in understanding physical phenomena
Release

Applied Fluid Mechanics

Author: Robert L. Mott

Publisher: Prentice Hall

ISBN: 9780675210263

Category: Fluid mechanics

Page: 645

View: 9801

"Applied Fluid Mechanics covers all of the basic principles of fluid mechanics - both statics and dynamics - in a clear, practical presentation that ties theory directly to real devices and systems used in chemical process industries, manufacturing, plant engineering, wastewater handling, and product design. Included is an extensive Appendix that serves as a useful learning and problem-solving tool."--BOOK JACKET.
Release

Transport Phenomena

An Introduction to Advanced Topics

Author: Larry A. Glasgow

Publisher: John Wiley & Sons

ISBN: 9781118031773

Category: Technology & Engineering

Page: 269

View: 6224

Enables readers to apply transport phenomena principles to solve advanced problems in all areas of engineering and science This book helps readers elevate their understanding of, and their ability to apply, transport phenomena by introducing a broad range of advanced topics as well as analytical and numerical solution techniques. Readers gain the ability to solve complex problems generally not addressed in undergraduate-level courses, including nonlinear, multidimensional transport, and transient molecular and convective transport scenarios. Avoiding rote memorization, the author emphasizes a dual approach to learning in which physical understanding and problem-solving capability are developed simultaneously. Moreover, the author builds both readers' interest and knowledge by: Demonstrating that transport phenomena are pervasive, affecting every aspect of life Offering historical perspectives to enhance readers' understanding of current theory and methods Providing numerous examples drawn from a broad range of fields in the physical and life sciences and engineering Contextualizing problems in scenarios so that their rationale and significance are clear This text generally avoids the use of commercial software for problem solutions, helping readers cultivate a deeper understanding of how solutions are developed. References throughout the text promote further study and encourage the student to contemplate additional topics in transport phenomena. Transport Phenomena is written for advanced undergraduates and graduate students in chemical and mechanical engineering. Upon mastering the principles and techniques presented in this text, all readers will be better able to critically evaluate a broad range of physical phenomena, processes, and systems across many disciplines.
Release

Introduction to fluid mechanics

Author: Robert W. Fox,Alan T. McDonald,Philip J. Pritchard

Publisher: John Wiley & Sons Inc

ISBN: N.A

Category: Science

Page: 787

View: 9727

Fox & McDonald provide a balanced and comprehensive approach to fluid mechanics that arms readers with proven problem-solving methodology! The authors show how to develop an orderly plan to solve problems: starting from basic equations, then clearly stating assumptions, and finally, relating results to expected physical behavior. This new edition simplifies many of the steps involved in analysis by using the computer application Excel. Over 100 detailed example problems illustrate important fluid mechanics concepts: Approximately 1300 end-of-chapter problems are arranged by difficulty level and include many problems that are designed to be solved using Excel. The CD for the book includes: A Brief Review of Microsoft Excel and numerous Excel files for the example problems and for use in solving problems. The new edition includes an expanded discussion of pipe networks, and a new section on oblique shocks and expansion waves.
Release

Fundamentals of Fluid Mechanics, 7th Ed, Munson-Okiishi-Huebsch-Rothmayer, 2013

Fundamentals of Fluid Mechanics,

Author: John Wiley & Sons,Inc

Publisher: Bukupedia

ISBN: N.A

Category: Science

Page: 796

View: 1392

Bruce R. Munson, Professor Emeritus of Engineering Mechanics at Iowa State University, received his B.S. and M.S. degrees from Purdue University and his Ph.D. degree from the Aerospace Engineering and Mechanics Department of the University of Minnesota in 1970. Prior to joining the Iowa State University faculty in 1974, Dr. Munson was on the mechanical engineering faculty of Duke University from 1970 to 1974. From 1964 to 1966, he worked as an engineer in the jet engine fuel control department of Bendix Aerospace Corporation, South Bend, Indiana. Dr. Munson’s main professional activity has been in the area of fluid mechanics education and research. He has been responsible for the development of many fluid mechanics courses for studies in civil engineering, mechanical engineering, engineering science, and agricultural engineering and is the recipient of an Iowa State University Superior Engineering Teacher Award and the Iowa State University Alumni Association Faculty Citation. He has authored and coauthored many theoretical and experimental technical papers on hydrodynamic stability, low Reynolds number flow, secondary flow, and the applications of viscous incompressible flow. He is a member of The American Society of Mechanical Engineers. Ted H. Okiishi, Professor Emeritus of Mechanical Engineering at Iowa State University, joined the faculty there in 1967 after receiving his undergraduate and graduate degrees from that institution. From 1965 to 1967, Dr. Okiishi served as a U.S. Army officer with duty assignments at the National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio, where he participated in rocket nozzle heat transfer research, and at the Combined Intelligence Center, Saigon, Republic of South Vietnam, where he studied seasonal river flooding problems. Professor Okiishi and his students have been active in research on turbomachinery fluid dynamics. Some of these projects have involved significant collaboration with government and industrial laboratory researchers, with two of their papers winning the ASME Melville Medal (in 1989 and 1998). Dr. Okiishi has received several awards for teaching. He has developed undergraduate and graduate courses in classical fluid dynamics as well as the fluid dynamics of turbomachines. He is a licensed professional engineer. His professional society activities include having been a vice president of The American Society of Mechanical Engineers (ASME) and of the American Society for Engineering Education. He is a Life Fellow of The American Society of Mechanical Engineers and past editor of its Journal of Turbomachinery. He was recently honored with the ASME R. Tom Sawyer Award. Wade W. Huebsch, Associate Professor in the Department of Mechanical and Aerospace Engineering at West Virginia University, received his B.S. degree in aerospace engineering from San Jose State University where he played college baseball. He received his M.S. degree in mechanical engineering and his Ph.D. in aerospace engineering from Iowa State University in 2000. Dr. Huebsch specializes in computational fluid dynamics research and has authored multiple journal articles in the areas of aircraft icing, roughness-induced flow phenomena, and boundary layer flow control. He has taught both undergraduate and graduate courses in fluid mechanics and has developed a new undergraduate course in computational fluid dynamics. He has received multiple teaching awards such as Outstanding Teacher and Teacher of the Year from the College of Engineering and Mineral Resources at WVU as well as the Ralph R. About the Authors Teetor Educational Award from SAE. He was also named as the Young Researcher of the Year from WVU. He is a member of the American Institute of Aeronautics and Astronautics, the Sigma Xi research society, the Society of Automotive Engineers, and the American Society of Engineering Education. Alric P. Rothmayer, Professor of Aerospace Engineering at Iowa State University, received his undergraduate and graduate degrees from the Aerospace Engineering Department at the University of Cincinnati, during which time he also worked at NASA Langley Research Center and was a visiting graduate research student at the Imperial College of Science and Technology in London. He joined the faculty at Iowa State University (ISU) in 1985 after a research fellowship sponsored by the Office of Naval Research at University College in London. Dr. Rothmayer has taught a wide variety of undergraduate fluid mechanics and propulsion courses for over 25 years, ranging from classical low and high speed flows to propulsion cycle analysis. Dr. Rothmayer was awarded an ISU Engineering Student Council Leadership Award, an ISU Foundation Award for Early Achievement in Research, an ISU Young Engineering Faculty Research Award, and a National Science Foundation Presidential Young Investigator Award. He is an Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA), and was chair of the 3rd AIAA Theoretical Fluid Mechanics Conference. Dr. Rothmayer specializes in the integration of Computational Fluid Dynamics with asymptotic methods and low order modeling for viscous flows. His research has been applied to diverse areas ranging from internal flows through compliant tubes to flow control and aircraft icing. In 2001, Dr. Rothmayer won a NASA Turning Goals into Reality (TGIR) Award as a member of the Aircraft Icing Project Team, and also won a NASA Group Achievement Award in 2009 as a member of the LEWICE Ice Accretion Software Development Team. He was also a member of the SAE AC-9C Aircraft Icing Technology Subcommittee of the Aircraft Environmental Systems Committee of SAE and the Fluid Dynamics Technical Committee of AIAA This book is intended for junior and senior engineering students who are interested in learning some fundamental aspects of fluid mechanics. We developed this text to be used as a first course. The principles considered are classical and have been well-established for many years. However, fluid mechanics education has improved with experience in the classroom, and we have brought to bear in this book our own ideas about the teaching of this interesting and important subject. This seventh edition has been prepared after several years of experience by the authors using the previous editions for introductory courses in fluid mechanics. On the basis of this experience, along with suggestions from reviewers, colleagues, and students, we have made a number of changes in this edition. The changes (listed below, and indicated by the word New in descriptions in this preface) are made to clarify, update, and expand certain ideas and concepts. New to This Edition In addition to the continual effort of updating the scope of the material presented and improving the presentation of all of the material, the following items are new to this edition. With the widespread use of new technologies involving the web, DVDs, digital cameras and the like, there is an increasing use and appreciation of the variety of visual tools available for learning. As in recent editions, this fact has been addressed in the new edition by continuing to include additional new illustrations, graphs, photographs, and videos. Illustrations: New illustrations and graphs have been added to this edition, as well as updates to past ones. The book now contains nearly 1600 illustrations. These illustrations range from simple ones that help illustrate a basic concept or equation to more complex ones that illustrate practical applications of fluid mechanics in our everyday lives. Photographs: This edition has also added new photographs throughout the book to enhance the text. The total number of photographs now exceeds 300. Some photos involve situations that are so common to us that we probably never stop to realize how fluids are involved in them. Others involve new and novel situations that are still baffling to us. The photos are also used to help the reader better understand the basic concepts and examples discussed. Combining the illustrations, graphs and photographs, the book has approximately 1900 visual aids. Videos: The video library has been enhanced by the addition of 19 new video segments directly related to the text material, as well as multiple updates to previous videos (i.e. same topic with an updated video clip). In addition to being strategically located at the appropriate places within the text, they are all listed, each with an appropriate thumbnail photo, in the video index. They illustrate many of the interesting and practical applications of real-world fluid phenomena. There are now 175 videos. Examples: The book contains 5 new example problems that involve various fluid flow fundamentals. Some of these examples also incorporate new PtD (Prevention through Design) discussion material. The PtD project, under the direction of the National Institute for Occupational Safety and Health, involves, in part, the use of textbooks to encourage the proper design and use of workday equipment and material so as to reduce accidents and injuries in the workplace. Problems and Problem Types: Approximately 30% new homework problems have been added for this edition, with a total number of 1484 problems in the text (additional problems in WileyPLUS). Also, new multiple-choice concept questions (developed by Jay Martin and John Mitchell of the University of Wisconsin-Madison) have been added at the beginning of each Problems section. These questions test the students’ knowledge of basic chapter concepts. This edition has also significantly improved the homework problem integration with the WileyPLUS course management system. New icons have been introduced in the Problems section to help instructors and students identify which problems are available to be assigned within WileyPLUS for automatic grading, and which problems have tutorial help available. Author: A new co-author was brought on board for this edition. We are happy to welcome Dr. Alric P. Rothmayer. Within WileyPLUS: New What an Engineer Sees animations demonstrate an engineer’s perspective of everyday objects, and relates the transfer of theory to real life through the solution of a problem involving that everyday object. New Office-Hours Videos demonstrate the solution of selected problems, focusing specifically on those areas in which students typically run into difficulty, with video and voiceover. Over 700 homework problems from the text that can be assigned for automatic feedback and grading (34 new for the 7th edition). Including 65 GO (Guided Online) Tutorial problems (26 new for this edition). Key Features Illustrations, Photographs, and Videos Fluid mechanics has always been a “visual” subject—much can be learned by viewing various aspects of fluid flow. In this new edition we have made several changes to reflect the fact that with new advances in technology, this visual component is becoming easier to incorporate into the learning environment, for both access and delivery, and is an important component to the learning of fluid mechanics. Thus, new photographs and illustrations have been added to the book. Some of these are within the text material; some are used to enhance the example problems; and some are included as margin figures of the type shown in the left margin to more clearly illustrate various points discussed in the text. In addition, new video segments have been added, bringing the total number of video segments to 175. These video segments illustrate many interesting and practical applications of real-world fluid phenomena. Each video segment is identified at the appropriate location in the text material by a video icon and thumbnail photograph of the type shown in the left margin. The full video library is shown in the video index at the back of the book. Each video segment has a separate associated text description of what is shown in the video. There are many homework problems that are directly related to the topics in the videos. Examples One of our aims is to represent fluid mechanics as it really is—an exciting and useful discipline. To this end, we include analyses of numerous everyday examples of fluid-flow phenomena to which students and faculty can easily relate. In the seventh edition there are 5 new examples and a total of 164 examples that provide detailed solutions to a variety of problems. Some of the new examples incorporate Prevention through Design (PtD) material. Many of the examples illustrate what happens if one or more of the parameters is changed. This gives the user a better feel for some of the basic principles involved. In addition, many of the examples contain new photographs of the actual device or item involved in the example. Also, all of the examples are outlined and carried out with the problem solving methodology of “Given, Find, Solution, and Comment” as discussed on page 5 in the “Note to User” before Example 1.1. Fluids in the News The set of approximately 60 short “Fluids in the News” stories reflect some of the latest important, and novel, ways that fluid mechanics affects our lives. Many of these problems have homework problems associated with them. Preface
Release

Fluid Mechanics and Thermodynamics of Turbomachinery

Author: S Larry Dixon,Cesare Hall

Publisher: Butterworth-Heinemann

ISBN: 0080962599

Category: Technology & Engineering

Page: 477

View: 5679

Turbomachinery is a challenging and diverse field, with applications for professionals and students in many subsets of the mechanical engineering discipline, including fluid mechanics, combustion and heat transfer, dynamics and vibrations, as well as structural mechanics and materials engineering. Originally published more than 40 years ago, Fluid Mechanics and Thermodynamics of Turbomachinery is the leading turbomachinery textbook. Used as a core text in senior undergraduate and graduate level courses this book will also appeal to professional engineers in the aerospace, global power, oil & gas and other industries who are involved in the design and operation of turbomachines. For this new edition, author S. Larry Dixon is joined by Cesare Hall from the University of Cambridge, whose diverse background of teaching, research and work experience in the area of turbomachines is well suited to the task of reorganizing and updating this classic text. Provides the most comprehensive coverage of the fundamentals of turbomachinery of any text in the field Content has been reorganized to more closely match how instructors currently teach the course, with coverage of fluid mechanics and thermodynamics moved to the front of the book Includes new design studies of several turbomachines, applying the theories developed in the book
Release

Fluid flow handbook

Author: Jamal Mohammed Saleh

Publisher: McGraw-Hill Professional

ISBN: N.A

Category: Science

Page: 1000

View: 3132

Helps in analyzing and designing fluid flow and piping systems projects. This work, blending theoretical review and engineering practicality, provides a treatment of pumps, pipes and piping systems, hydraulics, and hydrology. With illustrations, this handbook offers a discussion on issues critical to civil engineers.
Release

Applied Strength of Materials, Sixth Edition SI Units Version

Author: Robert L. Mott,Joseph A. Untener

Publisher: CRC Press

ISBN: 149877931X

Category: Science

Page: 820

View: 9103

APPLIED STRENGTH OF MATERIALS 6/e, SI Units Version provides coverage of basic strength of materials for students in Engineering Technology (4-yr and 2-yr) and uses only SI units. Emphasizing applications, problem solving, design of structural members, mechanical devices and systems, the book has been updated to include coverage of the latest tools, trends, and techniques. Color graphics support visual learning, and illustrate concepts and applications. Numerous instructor resources are offered, including a Solutions Manual, PowerPoint slides, Figure Slides of book figures, and extra problems. With SI units used exclusively, this text is ideal for all Technology programs outside the USA.
Release