Fluid Mechanics and the SPH Method

Theory and Applications

Author: Damien Violeau

Publisher: Oxford University Press

ISBN: 0199655529

Category: Science

Page: 594

View: 4430

This book presents the SPH method for fluid modelling from a theoretical and applied viewpoint. It explains the foundations of the method, from physical principles, and will help researchers, students, and engineers to understand how the method should be used and why it works well.
Release

Fluid Mechanics and the SPH Method

Theory and Applications

Author: Damien Violeau

Publisher: N.A

ISBN: 9780198744238

Category:

Page: 624

View: 698

This book presents the SPH method (Smoothed-Particle Hydrodynamics) for fluid modelling from a theoretical and applied viewpoint. It comprises two parts that refer to each other. The first one, dealing with the fundamentals of Hydraulics, is based on the elementary principles of Lagrangian and Hamiltonian Mechanics. The specific laws governing a system of macroscopic particles are built, before large systems involving dissipative processes are explained. The continua are discussed,
Release

Smoothed Particle Hydrodynamics

A Meshfree Particle Method

Author: Gui-Rong Liu,M. B. Liu

Publisher: World Scientific

ISBN: 9789812564405

Category: Science

Page: 449

View: 8095

This is the first-ever book on smoothed particle hydrodynamics (SPH)and its variations, covering the theoretical background, numericaltechniques, code implementation issues, and many novel and interestingapplications.
Release

Scour and Erosion

Proceedings of the 7th International Conference on Scour and Erosion, Perth, Australia, 2-4 December 2014

Author: Liang Cheng,Scott Draper,Hongwei An

Publisher: CRC Press

ISBN: 1138027324

Category: Technology & Engineering

Page: 818

View: 7458

The 7th International Conference on Scour and Erosion (ICSE 2014) was organised by the School of Civil, Environmental and Mining Engineering and the Centre for Offshore Foundation Systems at the University of Western Australia under the guidance of the Technical Committee 213 for Scour and Erosion of the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE). This biennial conference draws together leading academics, scientists and engineers engaged in scour and erosion research to present and exchange their latest scientific findings. These proceedings, together with the six previous proceedings dating from 2002, present a rare collection of technical and scientific developments in scour and erosion research which have been established over the last 12 years. This book includes state-of-the-art papers in scour and erosion from ICSE 2014, covering the 6 themes of: internal erosion, sediment transport, advanced numerical modelling of scour and erosion, terrestrial scour and erosion, river/bridge scour and erosion, and marine scour and erosion. The proceedings include 5 keynote lectures from world leading researches cutting across the themes of scour and erosion, together with 87 peer-reviewed papers from 19 countries. This book is ideal for researchers and industry working at the forefront of scour and erosion, both with application to rivers and marine operations.
Release

Vortex Methods

Theory and Practice

Author: Georges-Henri Cottet,Petros D. Koumoutsakos

Publisher: Cambridge University Press

ISBN: 0521621860

Category: Mathematics

Page: 313

View: 1141

Vortex methods have matured in recent years, offering an interesting alternative to finite difference and spectral methods for high resolution numerical solutions of the Navier Stokes equations. In the past three decades, research into the numerical analysis aspects of vortex methods has provided a solid mathematical background for understanding the accuracy and stability of the method. At the same time vortex methods retain their appealing physical character, which was the motivation for their introduction. This book presents and analyzes vortex methods as a tool for the direct numerical simulation of impressible viscous flows. It will interest graduate students and researchers in numerical analysis and fluid mechanics and also serve as an ideal textbook for courses in fluid dynamics.
Release

Offshore Mechanics

Structural and Fluid Dynamics for Recent Applications

Author: Madjid Karimirad,Constantine Michailides,Ali Nematbakhsh

Publisher: John Wiley & Sons

ISBN: 1119216621

Category: Technology & Engineering

Page: 304

View: 7311

Offshore Mechanics: Structural and Fluid Dynamics for Recent Applications is a textbook which covers theoretical concepts in offshore mechanics with consideration to new applications. Whereas most of the books currently available in the field of offshore mechanics use traditional oil, gas, and ship industry examples in order to explain the fundamentals in offshore mechanics, this book uses more recent applications including offshore wind farms, ocean energy devices, aquaculture, floating bridges and submerged tunnels. Offshore Mechanics: Structural and Fluid Dynamics for Recent Applications covers traditional and more recent methodologies used in offshore structure modelling (including SPH and Hydro-elasticity models). It examines numerical techniques, including computational fluid dynamics and finite element method and includes easy to understand examples.
Release

Particle Methods for Multi-Scale and Multi-physics

Author: Moubin E. T. Al LIU

Publisher: World Scientific

ISBN: 9814571709

Category: Science

Page: 400

View: 1276

Multi-scale and multi-physics modeling is useful and important for all areas in engineering and sciences. Particle Methods for Multi-Scale and Multi-Physics systematically addresses some major particle methods for modeling multi-scale and multi-physical problems in engineering and sciences. It contains different particle methods from atomistic scales to continuum scales, with emphasis on molecular dynamics (MD), dissipative particle dynamics (DPD) and smoothed particle hydrodynamics (SPH). This book covers the theoretical background, numerical techniques and many interesting applications of the particle methods discussed in this text, especially in: micro-fluidics and bio-fluidics (e.g., micro drop dynamics, movement and suspension of macro-molecules, cell deformation and migration); environmental and geophysical flows (e.g., saturated and unsaturated flows in porous media and fractures); and free surface flows with possible interacting solid objects (e.g., wave impact, liquid sloshing, water entry and exit, oil spill and boom movement). The presented methodologies, techniques and example applications will benefit students, researchers and professionals in computational engineering and sciences --
Release

Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes

Author: Miguel Cerrolaza,Sandra Shefelbine,Diego Garzón-Alvarado

Publisher: Academic Press

ISBN: 0128117192

Category: Technology & Engineering

Page: 454

View: 3509

Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes covers new and exciting modeling methods to help bioengineers tackle problems for which the Finite Element Method is not appropriate. The book covers a wide range of important subjects in the field of numerical methods applied to biomechanics, including bone biomechanics, tissue and cell mechanics, 3D printing, computer assisted surgery and fluid dynamics. Modeling strategies, technology and approaches are continuously evolving as the knowledge of biological processes increases. Both theory and applications are covered, making this an ideal book for researchers, students and R&D professionals. Provides non-conventional analysis methods for modeling Covers the Discrete Element Method (DEM), Particle Methods (PM), MessLess and MeshFree Methods (MLMF), Agent-Based Methods (ABM), Lattice-Boltzmann Methods (LBM) and Boundary Integral Methods (BIM) Includes contributions from several world renowned experts in their fields Compares pros and cons of each method to help you decide which method is most applicable to solving specific problems
Release

Lagrangian Fluid Dynamics

Author: Andrew Bennett

Publisher: Cambridge University Press

ISBN: 0521853109

Category: Mathematics

Page: 286

View: 3999

This 2006 book provides a detailed and comprehensive analytical development of the Lagrangian formulation of fluid dynamics.
Release

Smoothed Particle Hydrodynamics

Fundamentals and Basic Applications in Continuum Mechanics

Author: Carlos Alberto Dutra Fraga Filho

Publisher: Springer

ISBN: 9783030007720

Category: Technology & Engineering

Page: 142

View: 3499

This book is based on results obtained over a decade of study and research. It questions the use of dynamic molecular models in the continuum scale providing alternative solutions to open problems in the literature. It provides a physical-mathematical understanding of the differential equations that govern fluid flow and energy transport, serving as a reference to the application of smoothed particle hydrodynamics in continuum fluid mechanics and transport phenomena. This book presents the physical-mathematical modelling of the SPH method and provides examples of applications in continuum mechanics with numerical results and discussions. It defends concepts of continuum mechanics and the application of boundary treatment techniques that do not violate the laws of physics.
Release

Percolation Theory for Flow in Porous Media

Author: Allen Hunt,Robert Ewing,Behzad Ghanbarian

Publisher: Springer

ISBN: 3319037714

Category: Science

Page: 447

View: 3732

This monograph presents, for the first time, a unified and comprehensive introduction to some of the basic transport properties of porous media, such as electrical and hydraulic conductivity, air permeability and diffusion. The approach is based on critical path analysis and the scaling of transport properties, which are individually described as functions of saturation. At the same time, the book supplies a tutorial on percolation theory for hydrologists, providing them with the tools for solving actual problems. In turn, a separate chapter serves to introduce physicists to some of the language and complications of groundwater hydrology necessary for successful modeling. The end-of-chapter problems often indicate open questions, which young researchers entering the field can readily start working on. This significantly revised and expanded third edition includes in particular two new chapters: one on advanced fractal-based models, and one devoted to the discussion of various open issues such as the role of diffusion vs. advection, preferential flow vs. critical path, universal vs. non-universal exponents for conduction, and last but not least, the overall influence of the experimental apparatus in data collection and theory validation. "The book is suitable for advanced graduate courses, with selected problems and questions appearing at the end of each chapter. [...] I think the book is an important work that will guide soil scientists, hydrologists, and physicists to gain a better qualitative and quantitative understanding of multitransport properties of soils." (Marcel G. Schaap, Soil Science Society of America Journal, May-June, 2006)
Release

Moving Particle Semi-implicit Method

A Meshfree Particle Method for Fluid Dynamics

Author: Seiichi Koshizuka,Kazuya Shibata,Masahiro Kondo,Takuya Matsunaga

Publisher: Academic Press

ISBN: 0128128372

Category: Science

Page: 306

View: 8024

Moving Particle Semi-implicit Method: A Meshfree Particle Method for Fluid Dynamics begins by familiarizing the reader with basic theory that supports their journey through sections on advanced MPH methods. The unique insights that this method provides include fluid-structure interaction, non-Newtonian flow, and cavitation, making it relevant to a wide range of applications in the mechanical, structural, and nuclear industries, and in bioengineering. Co-authored by the originator of the MPS method, this book is the most authoritative guide available. It will be of great value to students, academics and researchers in industry. Presents the differences between MPH and SPH, helping readers choose between methods for different purposes Provides pieces of computer code that readers can use in their own simulations Includes the full, extended algorithms Explores the use of MPS in a range of industries and applications, including practical advice
Release

Meshless Methods in Solid Mechanics

Author: Youping Chen,James Lee,Azim Eskandarian

Publisher: Springer Science & Business Media

ISBN: 0387333681

Category: Science

Page: 200

View: 2085

This book covers the fundamentals of continuum mechanics, the integral formulation methods of continuum problems, the basic concepts of finite element methods, and the methodologies, formulations, procedures, and applications of various meshless methods. It also provides general and detailed procedures of meshless analysis on elastostatics, elastodynamics, non-local continuum mechanics and plasticity with a large number of numerical examples. Some basic and important mathematical methods are included in the Appendixes. For readers who want to gain knowledge through hands-on experience, the meshless programs for elastostatics and elastodynamics are provided on an included disc.
Release

Selected Topics of Computational and Experimental Fluid Mechanics

Author: Jaime Klapp,Gerardo Ruíz Chavarría,Abraham Medina Ovando,Abel López Villa,Leonardo Di G. Sigalotti

Publisher: Springer

ISBN: 3319114875

Category: Science

Page: 548

View: 5713

This book contains invited lectures and selected contributions presented at the Enzo Levi and XIX Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2013. It is aimed at fourth year undergraduate and graduate students, and scientists in the fields of physics, engineering and chemistry who are interested in fluid dynamics from an experimental and theoretical point of view. The invited lectures are introductory and avoid the use of complicated mathematics. The fluid dynamics applications include multiphase flow, convection, diffusion, heat transfer, rheology, granular material, viscous flow, porous media flow, geophysics and astrophysics. The material contained in the book includes recent advances in experimental and theoretical fluid dynamics and is suitable for both teaching and research.
Release

Computational Fluid Dynamics

Author: Frederic Magoules

Publisher: CRC Press

ISBN: 1439856613

Category: Mathematics

Page: 407

View: 3584

Exploring new variations of classical methods as well as recent approaches appearing in the field, Computational Fluid Dynamics demonstrates the extensive use of numerical techniques and mathematical models in fluid mechanics. It presents various numerical methods, including finite volume, finite difference, finite element, spectral, smoothed particle hydrodynamics (SPH), mixed-element-volume, and free surface flow. Taking a unified point of view, the book first introduces the basis of finite volume, weighted residual, and spectral approaches. The contributors present the SPH method, a novel approach of computational fluid dynamics based on the mesh-free technique, and then improve the method using an arbitrary Lagrange Euler (ALE) formalism. They also explain how to improve the accuracy of the mesh-free integration procedure, with special emphasis on the finite volume particle method (FVPM). After describing numerical algorithms for compressible computational fluid dynamics, the text discusses the prediction of turbulent complex flows in environmental and engineering problems. The last chapter explores the modeling and numerical simulation of free surface flows, including future behaviors of glaciers. The diverse applications discussed in this book illustrate the importance of numerical methods in fluid mechanics. With research continually evolving in the field, there is no doubt that new techniques and tools will emerge to offer greater accuracy and speed in solving and analyzing even more fluid flow problems.
Release

Numerical Methods in Astrophysics

An Introduction

Author: Peter Bodenheimer,Gregory P. Laughlin,Michal Rozyczka,Tomasz Plewa,Harold. W Yorke,Harold W. Yorke

Publisher: CRC Press

ISBN: 9780750308830

Category: Science

Page: 344

View: 8513

Numerical Methods in Astrophysics: An Introduction outlines various fundamental numerical methods that can solve gravitational dynamics, hydrodynamics, and radiation transport equations. This resource indicates which methods are most suitable for particular problems, demonstrates what the accuracy requirements are in numerical simulations, and suggests ways to test for and reduce the inevitable negative effects. After an introduction to the basic equations and derivations, the book focuses on practical applications of the numerical methods. It explores hydrodynamic problems in one dimension, N-body particle dynamics, smoothed particle hydrodynamics, and stellar structure and evolution. The authors also examine advanced techniques in grid-based hydrodynamics, evaluate the methods for calculating the gravitational forces in an astrophysical system, and discuss specific problems in grid-based methods for radiation transfer. The book incorporates brief user instructions and a CD-ROM of the numerical codes, allowing readers to experiment with the codes to suit their own needs. With numerous examples and sample problems that cover a wide range of current research topics, this highly practical guide illustrates how to solve key astrophysics problems, providing a clear introduction for graduate and undergraduate students as well as researchers and professionals.
Release

Level Set Methods and Fast Marching Methods

Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science

Author: J. A. Sethian

Publisher: Cambridge University Press

ISBN: 9780521645577

Category: Computers

Page: 378

View: 2597

This new edition is an introduction to level set methods and fast marching methods.
Release

Computer Simulation Using Particles

Author: R.W Hockney,J.W Eastwood

Publisher: CRC Press

ISBN: 9781439822050

Category: Science

Page: 540

View: 307

Computer simulation of systems has become an important tool in scientific research and engineering design, including the simulation of systems through the motion of their constituent particles. Important examples of this are the motion of stars in galaxies, ions in hot gas plasmas, electrons in semiconductor devices, and atoms in solids and liquids. The behavior of the system is studied by programming into the computer a model of the system and then performing experiments with this model. New scientific insight is obtained by observing such computer experiments, often for controlled conditions that are not accessible in the laboratory. Computer Simulation using Particles deals with the simulation of systems by following the motion of their constituent particles. This book provides an introduction to simulation using particles based on the NGP, CIC, and P3M algorithms and the programming principles that assist with the preparations of large simulation programs based on the OLYMPUS methodology. It also includes case study examples in the fields of astrophysics, plasmas, semiconductors, and ionic solids as well as more detailed mathematical treatment of the models, such as their errors, dispersion, and optimization. This resource will help you understand how engineering design can be assisted by the ability to predict performance using the computer model before embarking on costly and time-consuming manufacture.
Release