Design and Analysis of Experiments

Author: Angela Dean,Daniel Voss,Danel Draguljic

Publisher: Springer

ISBN: 3319522507

Category: Mathematics

Page: 842

View: 9621

This book offers a step-by-step guide to the experimental planning process and the ensuing analysis of normally distributed data, emphasizing the practical considerations governing the design of an experiment. Data sets are taken from real experiments and sample SAS programs are included with each chapter. Experimental design is an essential part of investigation and discovery in science; this book will serve as a modern and comprehensive reference to the subject.
Release

Design and Analysis of Experiments

Author: Angela M. Dean,Daniel Voss

Publisher: Springer Science & Business Media

ISBN: 0387226346

Category: Mathematics

Page: 742

View: 4297

This book offers a step-by-step guide to the experimental planning process and the ensuing analysis of normally distributed data, emphasizing the practical considerations governing the design of an experiment. Data sets are taken from real experiments and sample SAS programs are included with each chapter. Experimental design is an essential part of investigation and discovery in science; this book will serve as a modern and comprehensive reference to the subject.
Release

Design and Analysis of Experiments

Author: Angela M. Dean,Daniel Voss

Publisher: Springer Science & Business Media

ISBN: 0387985611

Category: Juvenile Nonfiction

Page: 740

View: 9282

This book offers a step-by-step guide to the experimental planning process and the ensuing analysis of normally distributed data, emphasizing the practical considerations governing the design of an experiment. Data sets are taken from real experiments and sample SAS programs are included with each chapter. Experimental design is an essential part of investigation and discovery in science; this book will serve as a modern and comprehensive reference to the subject.
Release

Statistical Design

Author: George Casella

Publisher: Springer Science & Business Media

ISBN: 0387759654

Category: Mathematics

Page: 307

View: 2974

Statistical design is one of the fundamentals of our subject, being at the core of the growth of statistics during the previous century. In this book the basic theoretical underpinnings are covered. It describes the principles that drive good designs and good statistics. Design played a key role in agricultural statistics and set down principles of good practice, principles that still apply today. Statistical design is all about understanding where the variance comes from, and making sure that is where the replication is. Indeed, it is probably correct to say that these principles are even more important today.
Release

The Design and Analysis of Computer Experiments

Author: Thomas J. Santner,Brian J. Williams,William I. Notz

Publisher: Springer Science & Business Media

ISBN: 1475737998

Category: Mathematics

Page: 284

View: 457

This book describes methods for designing and analyzing experiments conducted using computer code in lieu of a physical experiment. It discusses how to select the values of the factors at which to run the code (the design of the computer experiment). It also provides techniques for analyzing the resulting data so as to achieve these research goals.
Release

Design and Analysis of Experiments with R

Author: John Lawson

Publisher: CRC Press

ISBN: 1498728480

Category: Mathematics

Page: 620

View: 5023

Design and Analysis of Experiments with R presents a unified treatment of experimental designs and design concepts commonly used in practice. It connects the objectives of research to the type of experimental design required, describes the process of creating the design and collecting the data, shows how to perform the proper analysis of the data, and illustrates the interpretation of results. Drawing on his many years of working in the pharmaceutical, agricultural, industrial chemicals, and machinery industries, the author teaches students how to: Make an appropriate design choice based on the objectives of a research project Create a design and perform an experiment Interpret the results of computer data analysis The book emphasizes the connection among the experimental units, the way treatments are randomized to experimental units, and the proper error term for data analysis. R code is used to create and analyze all the example experiments. The code examples from the text are available for download on the author’s website, enabling students to duplicate all the designs and data analysis. Intended for a one-semester or two-quarter course on experimental design, this text covers classical ideas in experimental design as well as the latest research topics. It gives students practical guidance on using R to analyze experimental data.
Release

Statistical Analysis of Designed Experiments, Third Edition

Author: Helge Toutenburg,Shalabh

Publisher: Springer Science & Business Media

ISBN: 1441911480

Category: Mathematics

Page: 615

View: 7678

This book is the third revised and updated English edition of the German textbook \Versuchsplanung und Modellwahl" by Helge Toutenburg which was based on more than 15 years experience of lectures on the course \- sign of Experiments" at the University of Munich and interactions with the statisticians from industries and other areas of applied sciences and en- neering. This is a type of resource/ reference book which contains statistical methods used by researchers in applied areas. Because of the diverse ex- ples combined with software demonstrations it is also useful as a textbook in more advanced courses, The applications of design of experiments have seen a signi?cant growth in the last few decades in di?erent areas like industries, pharmaceutical sciences, medical sciences, engineering sciences etc. The second edition of this book received appreciation from academicians, teachers, students and applied statisticians. As a consequence, Springer-Verlag invited Helge Toutenburg to revise it and he invited Shalabh for the third edition of the book. In our experience with students, statisticians from industries and - searchers from other ?elds of experimental sciences, we realized the importance of several topics in the design of experiments which will - crease the utility of this book. Moreover we experienced that these topics are mostly explained only theoretically in most of the available books.
Release

Design of Experiments

An Introduction Based on Linear Models

Author: Max Morris

Publisher: CRC Press

ISBN: 1439894906

Category: Mathematics

Page: 376

View: 9896

Offering deep insight into the connections between design choice and the resulting statistical analysis, Design of Experiments: An Introduction Based on Linear Models explores how experiments are designed using the language of linear statistical models. The book presents an organized framework for understanding the statistical aspects of experimental design as a whole within the structure provided by general linear models, rather than as a collection of seemingly unrelated solutions to unique problems. The core material can be found in the first thirteen chapters. These chapters cover a review of linear statistical models, completely randomized designs, randomized complete blocks designs, Latin squares, analysis of data from orthogonally blocked designs, balanced incomplete block designs, random block effects, split-plot designs, and two-level factorial experiments. The remainder of the text discusses factorial group screening experiments, regression model design, and an introduction to optimal design. To emphasize the practical value of design, most chapters contain a short example of a real-world experiment. Details of the calculations performed using R, along with an overview of the R commands, are provided in an appendix. This text enables students to fully appreciate the fundamental concepts and techniques of experimental design as well as the real-world value of design. It gives them a profound understanding of how design selection affects the information obtained in an experiment.
Release

Statistical Analysis and Data Display

An Intermediate Course with Examples in S-PLUS, R, and SAS

Author: Richard M. Heiberger,Burt Holland

Publisher: Springer Science & Business Media

ISBN: 9780387402703

Category: Mathematics

Page: 729

View: 6749

This contemporary presentation of statistical methods features extensive use of graphical displays for exploring data and for displaying the analysis. The authors demonstrate how to analyze data—showing code, graphics, and accompanying computer listings—for all the methods they cover. They emphasize how to construct and interpret graphs, discuss principles of graphical design, and show how accompanying traditional tabular results are used to confirm the visual impressions derived directly from the graphs. Many of the graphical formats are novel and appear here for the first time in print. All chapters have exercises. This book can serve as a standalone text for statistics majors at the master's level and for other quantitatively oriented disciplines at the doctoral level, and as a reference book for researchers. In-depth discussions of regression analysis, analysis of variance, and design of experiments are followed by introductions to analysis of discrete bivariate data, nonparametrics, logistic regression, and ARIMA time series modeling. The authors illustrate classical concepts and techniques with a variety of case studies using both newer graphical tools and traditional tabular displays. The authors provide and discuss S-Plus, R, and SAS executable functions and macros for all new graphical display formats. All graphs and tabular output in the book were constructed using these programs. Complete transcripts for all examples and figures are provided for readers to use as models for their own analyses. Richard M. Heiberger and Burt Holland are both Professors in the Department of Statistics at Temple University and elected Fellows of the American Statistical Association. Richard M. Heiberger participated in the design of the S-Plus linear model and analysis of variance commands while on research leave at Bell Labs in 1987–88 and has been closely involved as a beta tester and user of S-Plus. Burt Holland has made many research contributions to linear modeling and simultaneous statistical inference, and frequently serves as a consultant to medical investigators. Both teach the Temple University course sequence that inspired them to write this text.
Release

Analysis of Variance in Experimental Design

Author: Harold R. Lindman

Publisher: Springer Science & Business Media

ISBN: 1461397227

Category: Mathematics

Page: 531

View: 6580

As an introductory textbook on the analysis of variance or a reference for the researcher, this text stresses applications rather than theory, but gives enough theory to enable the reader to apply the methods intelligently rather than mechanically. Comprehensive, and covering the important techniques in the field, including new methods of post hoc testing. The relationships between different research designs are emphasized, and these relationships are exploited to develop general principles which are generalized to the analyses of a large number of seemingly differentdesigns. Primarily for graduate students in any field where statistics are used.
Release

Design and Analysis of Simulation Experiments

Author: Jack P.C. Kleijnen

Publisher: Springer Science & Business Media

ISBN: 0387718133

Category: Mathematics

Page: 220

View: 9121

Simulation is a widely used methodology in all Applied Science disciplines. This textbook focuses on this crucial phase in the overall process of applying simulation, and includes the best of both classic and modern methods of simulation experimentation. This book will be the standard reference book on the topic for both researchers and sophisticated practitioners, and it will be used as a textbook in courses or seminars focusing on this topic.
Release

Statistical Methods for the Analysis of Repeated Measurements

Author: Charles S. Davis

Publisher: Springer Science & Business Media

ISBN: 0387953701

Category: Mathematics

Page: 415

View: 2809

This book provides a comprehensive summary of a wide variety of statistical methods for the analysis of repeated measurements. It is designed to be both a useful reference for practitioners and a textbook for a graduate-level course focused on methods for the analysis of repeated measurements. This book will be of interest to * Statisticians in academics, industry, and research organizations * Scientists who design and analyze studies in which repeated measurements are obtained from each experimental unit * Graduate students in statistics and biostatistics. The prerequisites are knowledge of mathematical statistics at the level of Hogg and Craig (1995) and a course in linear regression and ANOVA at the level of Neter et. al. (1985). The important features of this book include a comprehensive coverage of classical and recent methods for continuous and categorical outcome variables; numerous homework problems at the end of each chapter; and the extensive use of real data sets in examples and homework problems. The 80 data sets used in the examples and homework problems can be downloaded from www.springer-ny.com at the list of author websites. Since many of the data sets can be used to demonstrate multiple methods of analysis, instructors can easily develop additional homework problems and exam questions based on the data sets provided. In addition, overhead transparencies produced using TeX and solutions to homework problems are available to course instructors. The overheads also include programming statements and computer output for the examples, prepared primarily using the SAS System. Charles S. Davis is Senior Director of Biostatistics at Elan Pharmaceuticals, San Diego, California. He previously was professor in the Department of Biostatistics at the University of Iowa. He is author or co-author of more than 75 peer-reviewed papers in statistical and medical journals and one book (Categorical Data Analysis using the SAS System with Maura Stokes and Gary Koch). His research and teaching interests include categorical data analysis, methods for the analysis of repeated measurements, and clinical trials. Dr. Davis has consulted with numerous companies and has taught short courses on categorical data analysis, methods for the analysis of repeated measurements, and clinical trials methodology for industrial, government, and academic organizations. He received an "Excellence in Continuing Education" award from the American Statistical Association in 2001 and has served as associate editor of the journals Controlled Clinical Trials and The American Statistician and as chair of the Biometrics Section of the ASA.
Release

Design and Analysis of Experiments

Author: Douglas C. Montgomery

Publisher: John Wiley & Sons

ISBN: 1119113474

Category: Experimental design

Page: 630

View: 9547

TRY (FREE for 14 days), OR RENT this title: www.wileystudentchoice.com Design and Analysis of Experiments, 9th Edition continues to help senior and graduate students in engineering, business, and statistics-as well as working practitioners-to design and analyze experiments for improving the quality, efficiency and performance of working systems. This bestselling text maintains its comprehensive coverage by including: new examples, exercises, and problems (including in the areas of biochemistry and biotechnology); new topics and problems in the area of response surface; new topics in nested and split-plot design; and the residual maximum likelihood method is now emphasized throughout the book.
Release

Statistical Design and Analysis for Intercropping Experiments

Volume II: Three or More Crops

Author: Walter T. Federer

Publisher: Springer Science & Business Media

ISBN: 0387226478

Category: Mathematics

Page: 262

View: 7754

Intercropping is an area of research for which there is a desperate need, both in developing countries where people are rapidly depleting scarce resources and still starving, and in developed countries, where more ecologically and economically sound ways of feeding ourselves must be developed. The only published guidelines for conducting such research and analyzing the data have been scattered about in various journal articles, many of which are hard to find. This book condenses these methods and will be immensely valuable to agricultural researchers and to the statisticians who help them design their experiments and interpret their results.
Release

Design of Observational Studies

Author: Paul R. Rosenbaum

Publisher: Springer Science & Business Media

ISBN: 1441912134

Category: Mathematics

Page: 384

View: 2625

An observational study is an empiric investigation of effects caused by treatments when randomized experimentation is unethical or infeasible. Observational studies are common in most fields that study the effects of treatments on people, including medicine, economics, epidemiology, education, psychology, political science and sociology. The quality and strength of evidence provided by an observational study is determined largely by its design. Design of Observational Studies is both an introduction to statistical inference in observational studies and a detailed discussion of the principles that guide the design of observational studies. Design of Observational Studies is divided into four parts. Chapters 2, 3, and 5 of Part I cover concisely, in about one hundred pages, many of the ideas discussed in Rosenbaum’s Observational Studies (also published by Springer) but in a less technical fashion. Part II discusses the practical aspects of using propensity scores and other tools to create a matched comparison that balances many covariates. Part II includes a chapter on matching in R. In Part III, the concept of design sensitivity is used to appraise the relative ability of competing designs to distinguish treatment effects from biases due to unmeasured covariates. Part IV discusses planning the analysis of an observational study, with particular reference to Sir Ronald Fisher’s striking advice for observational studies, "make your theories elaborate." The second edition of his book, Observational Studies, was published by Springer in 2002.
Release

Optimal Design of Experiments

A Case Study Approach

Author: Peter Goos,Bradley Jones

Publisher: John Wiley & Sons

ISBN: 1119976162

Category: Science

Page: 304

View: 1351

"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.
Release

Plane Answers to Complex Questions

The Theory of Linear Models

Author: Ronald Christensen

Publisher: Springer Science & Business Media

ISBN: 1475724772

Category: Mathematics

Page: 453

View: 9064

The second edition of Plane Answers has many additions and a couple of deletions. New material includes additional illustrative examples in Ap pendices A and B and Chapters 2 and 3, as well as discussions of Bayesian estimation, near replicate lack of fit tests, testing the independence assump tion, testing variance components, the interblock analysis for balanced in complete block designs, nonestimable constraints, analysis of unreplicated experiments using normal plots, tensors, and properties of Kronecker prod ucts and Vee operators. The book contains an improved discussion of the relation between ANOVA and regression, and an improved presentation of general Gauss-Markov models. The primary material that has been deleted are the discussions of weighted means and of log-linear models. The mate rial on log-linear models was included in Christensen (1990b), so it became redundant here. Generally, I have tried to clean up the presentation of ideas wherever it seemed obscure to me. Much of the work on the second edition was done while on sabbatical at the University of Canterbury in Christchurch, New Zealand. I would par ticularly like to thank John Deely for arranging my sabbatical. Through their comments and criticisms, four people were particularly helpful in con structing this new edition. I would like to thank Wes Johnson, Snehalata Huzurbazar, Ron Butler, and Vance Berger.
Release

Quality Improvement with Design of Experiments

A Response Surface Approach

Author: I.N. Vuchkov,N.L. Boyadjieva

Publisher: Springer Science & Business Media

ISBN: 9400900090

Category: Mathematics

Page: 508

View: 5703

Residualplots 74 Normaland half-normal plots 77 2. 3. 10. TRANSFORMATIONS OF VARIABLES 80 2. 3. 11. WEIGHTED LEAST SQUARES 82 2. 4. Bibliography 84 Appendix A. 2. 1. Basic equation ofthe analysis ofvariance 84 Appendix A. 2. 2. Derivation of the simplified formulae (2. 1 0) and (2. 11) 85 Appendix A. 2. 3. Basic properties ofleast squares estimates 86 Appendix A. 2. 4. Sums ofsquares for tests for lack offit 88 Appendix A. 2. 5. Properties ofthe residuals 90 3. DESIGN OF REGRESSION EXPERIMENTS 96 3. 1. Introduction 96 3. 2. Variance-optimality of response surface designs 98 3. 3. Two Ievel full factorial designs 106 3. 3. 1. DEFINITIONS AND CONSTRUCTION 106 3. 3. 2. PROPERTIES OF TWO LEVEL FULL FACTORIAL DESIGNS 109 3. 3. 3. REGRESSION ANALYSIS OF DAT A OBT AlNED THROUGH TWO LEVEL FULL F ACTORIAL DESIGNS 113 Parameter estimation 113 Effects of factors and interactions 116 Statistical analysis of individual effects and test for lack of fit 118 3. 4. Two Ievel fractional factorial designs 123 3. 4. 1. CONSTRUCTION OF FRACTIONAL F ACTORIAL DESIGNS 123 3. 4. 2. FITTING EQUATIONS TO DATA OBTAlNED BY FRACTIONAL F ACTORIAL DESIGNS 130 3. 5. Bloclung 133 3. 6. Steepest ascent 135 3. 7. Second order designs 142 3. 7. 1. INTRODUCTION 142 3. 7. 2. COMPOSITE DESIGNS 144 Rotatable central composite designs 145 D-optimal composite designs 146 Hartley' s designs 146 3. 7. 3.
Release

Experimental Design

With Application in Management, Engineering, and the Sciences.

Author: Paul D. Berger,Robert E. Maurer,Giovana B. Celli

Publisher: Springer

ISBN: 3319645838

Category: Mathematics

Page: 639

View: 418

This text introduces and provides instruction on the design and analysis of experiments for a broad audience. Formed by decades of teaching, consulting, and industrial experience in the Design of Experiments field, this new edition contains updated examples, exercises, and situations covering the science and engineering practice. This text minimizes the amount of mathematical detail, while still doing full justice to the mathematical rigor of the presentation and the precision of statements, making the text accessible for those who have little experience with design of experiments and who need some practical advice on using such designs to solve day-to-day problems. Additionally, an intuitive understanding of the principles is always emphasized, with helpful hints throughout.
Release

Experiments

Planning, Analysis, and Optimization

Author: C. F. Jeff Wu,Michael S. Hamada

Publisher: John Wiley & Sons

ISBN: 1118211537

Category: Mathematics

Page: 760

View: 4173

Praise for the First Edition: "If you . . . want an up-to-date, definitive reference written by authors who have contributed much to this field, then this book is an essential addition to your library." —Journal of the American Statistical Association Fully updated to reflect the major progress in the use of statistically designed experiments for product and process improvement, Experiments, Second Edition introduces some of the newest discoveries—and sheds further light on existing ones—on the design and analysis of experiments and their applications in system optimization, robustness, and treatment comparison. Maintaining the same easy-to-follow style as the previous edition while also including modern updates, this book continues to present a new and integrated system of experimental design and analysis that can be applied across various fields of research including engineering, medicine, and the physical sciences. The authors modernize accepted methodologies while refining many cutting-edge topics including robust parameter design, reliability improvement, analysis of non-normal data, analysis of experiments with complex aliasing, multilevel designs, minimum aberration designs, and orthogonal arrays. Along with a new chapter that focuses on regression analysis, the Second Edition features expanded and new coverage of additional topics, including: Expected mean squares and sample size determination One-way and two-way ANOVA with random effects Split-plot designs ANOVA treatment of factorial effects Response surface modeling for related factors Drawing on examples from their combined years of working with industrial clients, the authors present many cutting-edge topics in a single, easily accessible source. Extensive case studies, including goals, data, and experimental designs, are also included, and the book's data sets can be found on a related FTP site, along with additional supplemental material. Chapter summaries provide a succinct outline of discussed methods, and extensive appendices direct readers to resources for further study. Experiments, Second Edition is an excellent book for design of experiments courses at the upper-undergraduate and graduate levels. It is also a valuable resource for practicing engineers and statisticians.
Release