Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python

Author: Tariq Rashid

Publisher: O'Reilly

ISBN: 3960101031

Category: Computers

Page: 232

View: 3595

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.
Release

TensorFlow für Dummies

Author: Matthew Scarpino

Publisher: John Wiley & Sons

ISBN: 3527818960

Category: Computers

Page: 324

View: 9932

TensorFlow ist Googles herausragendes Werkzeug für das maschinelle Lernen, und dieses Buch macht es zugänglich, selbst wenn Sie bisher wenig über neuronale Netze und Deep Learning wissen. Sie erfahren, auf welchen Prinzipien TensorFlow basiert und wie Sie mit TensorFlow Anwendungen schreiben. Gleichzeitig lernen Sie die Konzepte des maschinellen Lernens kennen. Wenn Sie Softwareentwickler sind und TensorFlow in Zukunft einsetzen möchten, dann ist dieses Buch der richtige Einstieg für Sie. Greifen Sie auch zu, wenn Sie einfach mehr über das maschinelle Lernen erfahren wollen.
Release

Das Geheimnis des menschlichen Denkens

Einblicke in das Reverse Engineering des Gehirns

Author: Ray Kurzweil

Publisher: Lola Books

ISBN: 394420316X

Category: Science

Page: 352

View: 3587

Der Wettlauf um das Gehirn hat begonnen. Sowohl die EU als auch die USA haben gewaltige Forschungsprojekte ins Leben gerufen um das Geheimnis des menschlichen Denkens zu entschlüsseln. 2023 soll es dann soweit sein: Das menschliche Gehirn kann vollständig simuliert werden. In "Das Geheimnis des menschlichen Denkens" gewährt Googles Chefingenieur Ray Kurzweil einen spannenden Einblick in das Reverse Engineering des Gehirns. Er legt dar, wie mithilfe der Mustererkennungstheorie des Geistes der ungeheuren Komplexität des Gehirns beizukommen ist und wirft einen ebenso präzisen wie überraschenden Blick auf die am Horizont sich bereits abzeichnende Zukunft. Ist das menschliche Gehirn erst einmal simuliert, wird künstliche Intelligenz die Fähigkeiten des Menschen schon bald übertreffen. Ein Ereignis, das Kurzweil aufgrund der bereits in "Menschheit 2.0" entworfenen exponentiellen Wachstumskurve der Informationstechnologien bereits für das Jahr 2029 prognostiziert. Aber was dann? Kurzweil ist zuversichtlich, dass die Vorteile künstlicher Intelligenz mögliche Bedrohungsszenarien überwiegen und sie uns entscheidend dabei hilft, uns weiterzuentwickeln und die Herausforderungen der Zukunft zu meistern.
Release

Lineare Algebra

Author: Gilbert Strang

Publisher: Springer-Verlag

ISBN: 3642556310

Category: Mathematics

Page: 656

View: 1558

Diese Einführung in die lineare Algebra bietet einen sehr anschaulichen Zugang zum Thema. Die englische Originalausgabe wurde rasch zum Standardwerk in den Anfängerkursen des Massachusetts Institute of Technology sowie in vielen anderen nordamerikanischen Universitäten. Auch hierzulande ist dieses Buch als Grundstudiumsvorlesung für alle Studenten hervorragend lesbar. Darüber hinaus gibt es neue Impulse in der Mathematikausbildung und folgt dem Trend hin zu Anwendungen und Interdisziplinarität. Inhaltlich umfasst das Werk die Grundkenntnisse und die wichtigsten Anwendungen der linearen Algebra und eignet sich hervorragend für Studierende der Ingenieurwissenschaften, Naturwissenschaften, Mathematik und Informatik, die einen modernen Zugang zum Einsatz der linearen Algebra suchen. Ganz klar liegt hierbei der Schwerpunkt auf den Anwendungen, ohne dabei die mathematische Strenge zu vernachlässigen. Im Buch wird die jeweils zugrundeliegende Theorie mit zahlreichen Beispielen aus der Elektrotechnik, der Informatik, der Physik, Biologie und den Wirtschaftswissenschaften direkt verknüpft. Zahlreiche Aufgaben mit Lösungen runden das Werk ab.
Release

R in a Nutshell

Author: Joseph Adler

Publisher: O'Reilly Germany

ISBN: 3897216507

Category: Computers

Page: 768

View: 690

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.
Release

Eine Geschichte von zwei Städten

Author: Charles Dickens

Publisher: BookRix

ISBN: 3736856393

Category: Fiction

Page: 545

View: 3859

Das Werk "Eine Geschichte aus zwei Städten" (Originaltitel: "A Tale of Two Cities") ist ein historischer Roman von Charles Dickens. Geschrieben 1859, ist das Buch mit über 200 Millionen verkauften Ausgaben das meistgedruckte original englischsprachige Buch aller Zeiten und gehört zu den berühmtesten Werken der Weltliteratur.
Release

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 7194

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.
Release

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 3260

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.
Release

Die Zukunft der Intelligenz

wie das Gehirn funktioniert, und was Computer davon lernen können

Author: Jeff Hawkins

Publisher: N.A

ISBN: 9783499621673

Category:

Page: 315

View: 6479

Release

Raspberry-Pi-Kochbuch

Lösungen für alle Software- und Hardware-Probleme. Für alle Versionen inklusive Pi 3 & Zero

Author: Simon Monk

Publisher: O'Reilly

ISBN: 396010118X

Category: Business & Economics

Page: 484

View: 9066

Das Raspberry-Pi-Universum wächst täglich. Ständig werden neue Erweiterungs-Boards und Software-Bibliotheken für den Single-Board-Computer entwickelt. Die zweite Ausgabe dieses beliebten Kochbuchs bietet mehr als 240 Hands-on-Rezepte für den Betrieb des kleinen Low-Cost-Computers mit Linux und für die Programmierung des Pi mit Python. Außerdem erläutert es die Anbindung von Sensoren, Motoren und anderer Hardware, einschließlich Arduino und das Internet der Dinge. Power-Maker und Autor Simon Monk vermittelt grundlegendes Know-how, das Ihnen hilft, auch neue Technologien und Entwicklungen zu verstehen und so mit dem Raspberry-Pi-Ökosystem mitzuwachsen. Dieses Kochbuch ist ideal für Programmierer und Bastler, die mit dem Pi bereits erste Erfahrungen gemacht haben. Alle Codebeispiele sind auf der Website zum Buch verfügbar. - Richten Sie Ihren Raspberry Pi ein und verbinden Sie ihn mit dem Netz. - Arbeiten Sie mit seinem Linux-basierten Betriebssystem Raspbian. - Lernen Sie, den Pi mit Python zu programmieren. - Verleihen Sie Ihrem Pi "Augen" für Anwendungen, die maschinelles Sehen erfordern. - Steuern Sie Hardware über den GPIO-Anschluss. - Verwenden Sie den Raspberry Pi, um unterschiedliche Motoren zu betreiben. - Arbeiten Sie mit Schaltern, Tastaturen und anderen digitalen Eingaben. - Verwenden Sie Sensoren zur Messung von Temperatur, Licht und Entfernung. - Realisieren Sie auf verschiedenen Wegen eine Verbindung zu IoT-Geräten. - Entwerfen Sie dynamische Projekte mit Raspberry Pi und dem Arduino.
Release

Zeitreihenmodelle

Author: Andrew C. Harvey

Publisher: De Gruyter Oldenbourg

ISBN: 9783486230062

Category:

Page: 379

View: 8370

Gegenstand des Werkes sind Analyse und Modellierung von Zeitreihen. Es wendet sich an Studierende und Praktiker aller Disziplinen, in denen Zeitreihenbeobachtungen wichtig sind.
Release

Data Science mit Python für Dummies

Author: John Paul Mueller,Luca Massaron

Publisher: John Wiley & Sons

ISBN: 3527807144

Category: Mathematics

Page: 424

View: 2635

Sie wollen sich ernsthaft mit wissenschaftlicher Datenanalyse beschäftigen und wissen, dass Sie da an Python nur schwer vorbeikommen? Dann ist dieses das richtige Buch für Sie. John Paul Mueller erklärt Ihnen, was Sie in Python beherrschen müssen, um sich der Datenanalyse zu widmen inklusive Objekten, Funktionen, Modulen und Bibliotheken. Außerdem erläutert er die wichtigsten Bibliotheken für die Datenanalyse wie NumPy, SciPy, BeautifulSoup, Pandas, und MatPlobLib. So lernen Sie Python für die Datenanalyse richtig einsetzen.
Release

Text Mining in den Sozialwissenschaften

Grundlagen und Anwendungen zwischen qualitativer und quantitativer Diskursanalyse

Author: Matthias Lemke,Gregor Wiedemann

Publisher: Springer-Verlag

ISBN: 3658072245

Category: Social Science

Page: 423

View: 6212

Die Analyse von Sprache ermöglicht Rückschlüsse auf Gesellschaft und Politik. Im Zeitalter digitaler Massenmedien liegt Sprache als maschinenlesbarer Text in einer Menge vor, die ohne Hilfsmittel nicht mehr angemessen zu bewältigen ist. Die maschinelle Auswertung von Textdaten kann in den Sozialwissenschaften, die Text bislang in der Regel qualitativ und weniger quantitativ, also sprachstatistisch, analysieren, wertvolle neue Erkenntnisse liefern. Vor diesem Hintergrund führt der Band in die Verwendung von Text Mining in den Sozialwissenschaften ein. Anhand exemplarischer Analysen eines Korpus von 3,5 Millionen Zeitungsartikeln zeigt er für konkrete Forschungsfragen, wie Text Mining angewandt werden kann.
Release

Linux Kurz and Gut (2nd Edition)

Author: Daniel J. Barrett

Publisher: O'Reilly Germany

ISBN: 3868994130

Category: Computers

Page: 248

View: 7741

Wenn Sie Linux bei Ihrer alltäglichen Arbeit verwenden, ist diese Kurzreferenz genau das Richtige, denn obwohl die grafischen Linux-Benutzeroberflächen angenehm intuitiv zu benutzen sind, lassen sich viele Aufgaben über die Befehlszeile eleganter und schneller lösen. Diese zweite überarbeitete und erweiterte Auflage behandelt distributionsübergreifend: Dateisysteme, Verzeichnisse und Shells Dateierzeugung und -bearbeitung Dateitextmanipulation und Pipelines Backups und externe Speicherung Betrachtung und Steuerung von Prozessen Verwaltung von Benutzerzugängen Benutzer und Administratoren Netzwerkverbindungen Audio und Video Softwareinstallation Programmierung mit Shellskripten
Release

Algorithmen für Dummies

Author: John Paul Mueller,Luca Massaron

Publisher: John Wiley & Sons

ISBN: 3527809775

Category: Computers

Page: 320

View: 7188

Wir leben in einer algorithmenbestimmten Welt. Deshalb lohnt es sich zu verstehen, wie Algorithmen arbeiten. Das Buch präsentiert die wichtigsten Anwendungsgebiete für Algorithmen: Optimierung, Sortiervorgänge, Graphentheorie, Textanalyse, Hashfunktionen. Zu jedem Algorithmus werden jeweils Hintergrundwissen und praktische Grundlagen vermittelt sowie Beispiele für aktuelle Anwendungen gegeben. Für interessierte Leser gibt es Umsetzungen in Python, sodass die Algorithmen auch verändert und die Auswirkungen der Veränderungen beobachtet werden können. Dieses Buch richtet sich an Menschen, die an Algorithmen interessiert sind, ohne eine Doktorarbeit zu dem Thema schreiben zu wollen. Wer es gelesen hat, versteht, wie wichtige Algorithmen arbeiten und wie man von dieser Arbeit beispielsweise bei der Entwicklung von Unternehmensstrategien profitieren kann.
Release

Programmieren lernen mit Python

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3955618072

Category: Computers

Page: 320

View: 9381

Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Zur aktualisierten Auflage Diese Auflage behandelt Python 3, geht dabei aber auch auf Unterschiede zu Python 2 ein. Außerdem wurde das Buch um die Themen Unicode, List und Dictionary Comprehensions, den Mengen-Typ Set, die String-Format-Methode und print als Funktion ergänzt. Jenseits reiner Theorie Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält.
Release

Clean Code - Refactoring, Patterns, Testen und Techniken für sauberen Code

Deutsche Ausgabe

Author: Robert C. Martin

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3826696387

Category: Computers

Page: 480

View: 1849

h2> Kommentare, Formatierung, Strukturierung Fehler-Handling und Unit-Tests Zahlreiche Fallstudien, Best Practices, Heuristiken und Code Smells Clean Code - Refactoring, Patterns, Testen und Techniken für sauberen Code Aus dem Inhalt: Lernen Sie, guten Code von schlechtem zu unterscheiden Sauberen Code schreiben und schlechten Code in guten umwandeln Aussagekräftige Namen sowie gute Funktionen, Objekte und Klassen erstellen Code so formatieren, strukturieren und kommentieren, dass er bestmöglich lesbar ist Ein vollständiges Fehler-Handling implementieren, ohne die Logik des Codes zu verschleiern Unit-Tests schreiben und Ihren Code testgesteuert entwickeln Selbst schlechter Code kann funktionieren. Aber wenn der Code nicht sauber ist, kann er ein Entwicklungsunternehmen in die Knie zwingen. Jedes Jahr gehen unzählige Stunden und beträchtliche Ressourcen verloren, weil Code schlecht geschrieben ist. Aber das muss nicht sein. Mit Clean Code präsentiert Ihnen der bekannte Software-Experte Robert C. Martin ein revolutionäres Paradigma, mit dem er Ihnen aufzeigt, wie Sie guten Code schreiben und schlechten Code überarbeiten. Zusammen mit seinen Kollegen von Object Mentor destilliert er die besten Praktiken der agilen Entwicklung von sauberem Code zu einem einzigartigen Buch. So können Sie sich die Erfahrungswerte der Meister der Software-Entwicklung aneignen, die aus Ihnen einen besseren Programmierer machen werden – anhand konkreter Fallstudien, die im Buch detailliert durchgearbeitet werden. Sie werden in diesem Buch sehr viel Code lesen. Und Sie werden aufgefordert, darüber nachzudenken, was an diesem Code richtig und falsch ist. Noch wichtiger: Sie werden herausgefordert, Ihre professionellen Werte und Ihre Einstellung zu Ihrem Beruf zu überprüfen. Clean Code besteht aus drei Teilen:Der erste Teil beschreibt die Prinzipien, Patterns und Techniken, die zum Schreiben von sauberem Code benötigt werden. Der zweite Teil besteht aus mehreren, zunehmend komplexeren Fallstudien. An jeder Fallstudie wird aufgezeigt, wie Code gesäubert wird – wie eine mit Problemen behaftete Code-Basis in eine solide und effiziente Form umgewandelt wird. Der dritte Teil enthält den Ertrag und den Lohn der praktischen Arbeit: ein umfangreiches Kapitel mit Best Practices, Heuristiken und Code Smells, die bei der Erstellung der Fallstudien zusammengetragen wurden. Das Ergebnis ist eine Wissensbasis, die beschreibt, wie wir denken, wenn wir Code schreiben, lesen und säubern. Dieses Buch ist ein Muss für alle Entwickler, Software-Ingenieure, Projektmanager, Team-Leiter oder Systemanalytiker, die daran interessiert sind, besseren Code zu produzieren. Über den Autor: Robert C. »Uncle Bob« Martin entwickelt seit 1970 professionell Software. Seit 1990 arbeitet er international als Software-Berater. Er ist Gründer und Vorsitzender von Object Mentor, Inc., einem Team erfahrener Berater, die Kunden auf der ganzen Welt bei der Programmierung in und mit C++, Java, C#, Ruby, OO, Design Patterns, UML sowie Agilen Methoden und eXtreme Programming helfen.
Release