Data Mining with SPSS Modeler

Theory, Exercises and Solutions

Author: Tilo Wendler,Sören Gröttrup

Publisher: Springer

ISBN: 3319287095

Category: Mathematics

Page: 1059

View: 6230

Introducing the IBM SPSS Modeler, this book guides readers through data mining processes and presents relevant statistical methods. There is a special focus on step-by-step tutorials and well-documented examples that help demystify complex mathematical algorithms and computer programs. The variety of exercises and solutions as well as an accompanying website with data sets and SPSS Modeler streams are particularly valuable. While intended for students, the simplicity of the Modeler makes the book useful for anyone wishing to learn about basic and more advanced data mining, and put this knowledge into practice.
Release

IBM SPSS Modeler Essentials

Effective techniques for building powerful data mining and predictive analytics solutions

Author: Jesus Salcedo,Keith McCormick

Publisher: Packt Publishing Ltd

ISBN: 1788296826

Category: Computers

Page: 238

View: 2629

Get to grips with the fundamentals of data mining and predictive analytics with IBM SPSS Modeler About This Book Get up–and-running with IBM SPSS Modeler without going into too much depth. Identify interesting relationships within your data and build effective data mining and predictive analytics solutions A quick, easy–to-follow guide to give you a fundamental understanding of SPSS Modeler, written by the best in the business Who This Book Is For This book is ideal for those who are new to SPSS Modeler and want to start using it as quickly as possible, without going into too much detail. An understanding of basic data mining concepts will be helpful, to get the best out of the book. What You Will Learn Understand the basics of data mining and familiarize yourself with Modeler's visual programming interface Import data into Modeler and learn how to properly declare metadata Obtain summary statistics and audit the quality of your data Prepare data for modeling by selecting and sorting cases, identifying and removing duplicates, combining data files, and modifying and creating fields Assess simple relationships using various statistical and graphing techniques Get an overview of the different types of models available in Modeler Build a decision tree model and assess its results Score new data and export predictions In Detail IBM SPSS Modeler allows users to quickly and efficiently use predictive analytics and gain insights from your data. With almost 25 years of history, Modeler is the most established and comprehensive Data Mining workbench available. Since it is popular in corporate settings, widely available in university settings, and highly compatible with all the latest technologies, it is the perfect way to start your Data Science and Machine Learning journey. This book takes a detailed, step-by-step approach to introducing data mining using the de facto standard process, CRISP-DM, and Modeler's easy to learn “visual programming” style. You will learn how to read data into Modeler, assess data quality, prepare your data for modeling, find interesting patterns and relationships within your data, and export your predictions. Using a single case study throughout, this intentionally short and focused book sticks to the essentials. The authors have drawn upon their decades of teaching thousands of new users, to choose those aspects of Modeler that you should learn first, so that you get off to a good start using proven best practices. This book provides an overview of various popular data modeling techniques and presents a detailed case study of how to use CHAID, a decision tree model. Assessing a model's performance is as important as building it; this book will also show you how to do that. Finally, you will see how you can score new data and export your predictions. By the end of this book, you will have a firm understanding of the basics of data mining and how to effectively use Modeler to build predictive models. Style and approach This book empowers users to build practical & accurate predictive models quickly and intuitively. With the support of the advanced analytics users can discover hidden patterns and trends.This will help users to understand the factors that influence them, enabling you to take advantage of business opportunities and mitigate risks.
Release

Handbook of Statistical Analysis and Data Mining Applications

Author: Robert Nisbet,Gary Miner,Ken Yale

Publisher: Elsevier

ISBN: 0124166458

Category: Mathematics

Page: 822

View: 9416

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Release

IBM SPSS Modeler Cookbook

Author: Keith McCormick,Dean Abbott,Meta S. Brown

Publisher: Packt Pub Limited

ISBN: 9781849685467

Category: Computers

Page: 382

View: 9491

This is a practical cookbook with intermediate-advanced recipes for SPSS Modeler data analysts. It is loaded with step-by-step examples explaining the process followed by the experts.If you have had some hands-on experience with IBM SPSS Modeler and now want to go deeper and take more control over your data mining process, this is the guide for you. It is ideal for practitioners who want to break into advanced analytics.
Release

Decision Trees and Applications with IBM SPSS Modeler

Author: Marvin L.

Publisher: N.A

ISBN: 9781540754837

Category:

Page: 180

View: 9550

A wide range of applications, such as R, SAS, MATLAB, and SPSS Statistics, provide a huge toolbox of methods to analyze large data and can be used by experts to find patterns and interesting structures in the data. Many of these tools are mainly programming languages, which assumes the analyst has deeper programming skills and an advanced background in IT and mathematics. Since this field is becoming more important, graphic user-interfaced data analysis software is starting to enter the market, providing "drag and drop" mechanisms for career changers and people who are not experts in programming or statistics.One of these easy to handle, data analytics applications is the IBM SPSS Modeler. This book is dedicated to the introduction and explanation of its data analysis power and focused in decision trees. The more important topics are the next: Decision Tree Models General Uses of Tree-Based Analysis C&RT Algorithms CHAID Algorithms QUEST Algorithms C5.0 Algorithms Decision Trees with IM SPSS Modeler Building a Decision Tree with the C5.0 Node Building a decision tree with the CHAID node The C&R Tree node and variable generation The QUEST node-Boosting & Imbalanced data Detection of diabetes-comparison of decision tree nodes Rule set and cross-validation with C5.0 The Auto Classifier Node Building a Stream with the Auto Classifier Node The Auto Classifier Model Nugget Models for credit rating with the Auto Classifier node SVM classifier Interactive decision Trees with IBM SPSS Modeler The Interactive Tree Builder Growing and Pruning the Tree Defining Custom Splits Customizing the Tree View Gains Risks The Growing Directives Generation Filter and Select Nodes Building a Tree Model Directly C&R Tree, CHAID, QUEST, and C 5.0 Models Nuggets Model Nuggets for Boosting, Bagging and Very Large Datasets
Release

Effective CRM Using Predictive Analytics

Author: Antonios Chorianopoulos

Publisher: John Wiley & Sons

ISBN: 1119011558

Category: BUSINESS & ECONOMICS

Page: 392

View: 2106

A step-by-step guide to data mining applications in CRM. Following a handbook approach, this book bridges the gap between analytics and their use in everyday marketing, providing guidance on solving real business problems using data mining techniques. The book is organized into three parts. Part one provides a methodological roadmap, covering both the business and the technical aspects. The data mining process is presented in detail along with specific guidelines for the development of optimized acquisition, cross/ deep/ up selling and retention campaigns, as well as effective customer segmentation schemes. Additionally, some of the most useful data mining algorithms are explained in a simple and comprehensive way for business users with no technical expertise. In part two, some of the most useful data mining algorithms are explained in a simple and comprehensive way for business users with no technical expertise. Part three is packed with real world case studies which employ the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Case studies from industries including banking, retail and telecommunications are presented in detail so as to serve as templates for developing similar applications. Key Features: Includes numerous real-world case studies which are presented step by step, demystifying the usage of data mining models and clarifying all the methodological issues. Topics are presented with the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Accompanied by a website featuring material from each case study, including datasets and relevant code. Combining data mining and business knowledge, this practical book provides all the necessary information for designing, setting up, executing and deploying data mining techniques in CRM. Effective CRM using Predictive Analytics will benefit data mining practitioners and consultants, data analysts, statisticians, and CRM officers. The book will also be useful to academics and students interested in applied data mining.
Release

Data Mining and Statistics for Decision Making

Author: Stéphane Tufféry

Publisher: John Wiley & Sons

ISBN: 9780470979280

Category: Computers

Page: 716

View: 4087

Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives. This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations. Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques. Starts from basic principles up to advanced concepts. Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software. Gives practical tips for data mining implementation to solve real world problems. Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring. Supported by an accompanying website hosting datasets and user analysis. Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.
Release

Matrix Algebra: Exercises and Solutions

Author: David A. Harville

Publisher: Springer Science & Business Media

ISBN: 1461301815

Category: Mathematics

Page: 271

View: 3838

This book contains over 300 exercises and solutions that together cover a wide variety of topics in matrix algebra. They can be used for independent study or in creating a challenging and stimulating environment that encourages active engagement in the learning process. The requisite background is some previous exposure to matrix algebra of the kind obtained in a first course. The exercises are those from an earlier book by the same author entitled Matrix Algebra From a Statistician's Perspective. They have been restated (as necessary) to stand alone, and the book includes extensive and detailed summaries of all relevant terminology and notation. The coverage includes topics of special interest and relevance in statistics and related disciplines, as well as standard topics. The overlap with exercises available from other sources is relatively small. This collection of exercises and their solutions will be a useful reference for students and researchers in matrix algebra. It will be of interest to mathematicians and statisticians.
Release

Data Mining for Business Analytics

Concepts, Techniques, and Applications in R

Author: Galit Shmueli,Peter C. Bruce,Inbal Yahav,Nitin R. Patel,Kenneth C. Lichtendahl, Jr.

Publisher: John Wiley & Sons

ISBN: 1118879333

Category: Mathematics

Page: 574

View: 3853

Data Mining for Business Analytics: Concepts, Techniques, and Applications in R presents an applied approach to data mining concepts and methods, using R software for illustration Readers will learn how to implement a variety of popular data mining algorithms in R (a free and open-source software) to tackle business problems and opportunities. This is the fifth version of this successful text, and the first using R. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: • Two new co-authors, Inbal Yahav and Casey Lichtendahl, who bring both expertise teaching business analytics courses using R, and data mining consulting experience in business and government • Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students • More than a dozen case studies demonstrating applications for the data mining techniques described • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions www.dataminingbook.com Data Mining for Business Analytics: Concepts, Techniques, and Applications in R is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “ This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 publications including books. Peter C. Bruce is President and Founder of the Institute for Statistics Education at Statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective (Wiley) and co-author of Practical Statistics for Data Scientists: 50 Essential Concepts (O’Reilly). Inbal Yahav, PhD, is Professor at the Graduate School of Business Administration at Bar-Ilan University, Israel. She teaches courses in social network analysis, advanced research methods, and software quality assurance. Dr. Yahav received her PhD in Operations Research and Data Mining from the University of Maryland, College Park. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad, for 15 years. Kenneth C. Lichtendahl, Jr., PhD, is Associate Professor at the University of Virginia. He is the Eleanor F. and Phillip G. Rust Professor of Business Administration and teaches MBA courses in decision analysis, data analysis and optimization, and managerial quantitative analysis. He also teaches executive education courses in strategic analysis and decision-making, and managing the corporate aviation function.
Release

Business Intelligence and Data Mining

Author: Anil Maheshwari

Publisher: Business Expert Press

ISBN: 1631571214

Category: Business & Economics

Page: 162

View: 3444

“This book is a splendid and valuable addition to this subject. The whole book is well written and I have no hesitation to recommend that this can be adapted as a textbook for graduate courses in Business Intelligence and Data Mining.” Dr. Edi Shivaji, Des Moines, Iowa “As a complete novice to this area just starting out on a MBA course I found the book incredibly useful and very easy to follow and understand. The concepts are clearly explained and make it an easy task to gain an understanding of the subject matter.” -- Mr. Craig Domoney, South Africa. Business Intelligence and Data Mining is a conversational and informative book in the exploding area of Business Analytics. Using this book, one can easily gain the intuition about the area, along with a solid toolset of major data mining techniques and platforms. This book can thus be gainfully used as a textbook for a college course. It is also short and accessible enough for a busy executive to become a quasi-expert in this area in a couple of hours. Every chapter begins with a case-let from the real world, and ends with a case study that runs across the chapters.
Release

Transparent Data Mining for Big and Small Data

Author: Tania Cerquitelli,Daniele Quercia,Frank Pasquale

Publisher: Springer

ISBN: 3319540246

Category: Computers

Page: 215

View: 2168

This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches.As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use.
Release

The Python Workbook

A Brief Introduction with Exercises and Solutions

Author: Ben Stephenson

Publisher: Springer

ISBN: 3319142402

Category: Computers

Page: 165

View: 3199

While other textbooks devote their pages to explaining introductory programming concepts, The Python Workbook focuses exclusively on exercises, following the philosophy that computer programming is a skill best learned through experience and practice. Designed to support and encourage hands-on learning about programming, this student-friendly work contains 174 exercises, spanning a variety of academic disciplines and everyday situations. Solutions to selected exercises are also provided, supported by brief annotations that explain the technique used to solve the problem, or highlight specific points of Python syntax. No background knowledge is required to solve the exercises, beyond the material covered in a typical introductory Python programming course. Undergraduate students undergoing their first programming course and wishing to enhance their programming abilities will find the exercises and solutions provided in this book to be ideal for their needs.
Release

Our Experience Converting an IBM Forecasting Solution from R to IBM SPSS Modeler

Author: Pitipong JS Lin,Fan Li,Yin Long,Stefa Etchegaray Garcia,Jyotishko Biswas,IBM Redbooks

Publisher: IBM Redbooks

ISBN: 0738454141

Category: Computers

Page: 82

View: 9077

This IBM® RedpaperTM publication presents the process and steps that were taken to move from an R language forecasting solution to an IBM SPSS® Modeler solution. The paper identifies the key challenges that the team faced and the lessons they learned. It describes the journey from analysis through design to key actions that were taken during development to make the conversion successful. The solution approach is described in detail so that you can learn how the team broke the original R solution architecture into logical components in order to plan for the conversion project. You see key aspects of the conversion from R to IBM SPSS Modeler and how basic parts, such as data preparation, verification, pre-screening, and automating data quality checks, are accomplished. The paper consists of three chapters: Chapter 1 introduces the business background and the problem domain. Chapter 2 explains critical technical challenges that the team confronted and solved. Chapter 3 focuses on lessons that were learned during this process and ideas that might apply to your conversion project. This paper applies to various audiences: Decision makers and IT Architects who focus on the architecture, roadmap, software platform, and total cost of ownership. Solution development team members who are involved in creating statistical/analytics-based solutions and who are familiar with R and IBM SPSS Modeler.
Release

Data Mining and Predictive Analytics

Author: Daniel T. Larose,Chantal D. Larose

Publisher: John Wiley & Sons

ISBN: 1118868676

Category: Computers

Page: 824

View: 2794

Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics, Second Edition: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant.com, with exclusive password-protected instructor content Data Mining and Predictive Analytics, Second Edition will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.
Release

Data Mining For Dummies

Author: Meta S. Brown

Publisher: John Wiley & Sons

ISBN: 1118893166

Category: Computers

Page: 408

View: 5471

Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining.
Release

Discovering Knowledge in Data

An Introduction to Data Mining

Author: Daniel T. Larose

Publisher: John Wiley & Sons

ISBN: 1118873572

Category: Computers

Page: 336

View: 9212

The field of data mining lies at the confluence of predictive analytics, statistical analysis, and business intelligence. Due to the ever-increasing complexity and size of data sets and the wide range of applications in computer science, business, and health care, the process of discovering knowledge in data is more relevant than ever before. This book provides the tools needed to thrive in today’s big data world. The author demonstrates how to leverage a company’s existing databases to increase profits and market share, and carefully explains the most current data science methods and techniques. The reader will “learn data mining by doing data mining”. By adding chapters on data modelling preparation, imputation of missing data, and multivariate statistical analysis, Discovering Knowledge in Data, Second Edition remains the eminent reference on data mining. The second edition of a highly praised, successful reference on data mining, with thorough coverage of big data applications, predictive analytics, and statistical analysis. Includes new chapters on Multivariate Statistics, Preparing to Model the Data, and Imputation of Missing Data, and an Appendix on Data Summarization and Visualization Offers extensive coverage of the R statistical programming language Contains 280 end-of-chapter exercises Includes a companion website for university instructors who adopt the book
Release

Tech Mining

Exploiting New Technologies for Competitive Advantage

Author: Alan L. Porter,Scott W. Cunningham

Publisher: John Wiley & Sons

ISBN: 0471698458

Category: Technology & Engineering

Page: 384

View: 1586

Tech Mining makes exploitation of text databases meaningful to those who can gain from derived knowledge about emerging technologies. It begins with the premise that we have the information, the tools to exploit it, and the need for the resulting knowledge. The information provided puts new capabilities at the hands of technology managers. Using the material present, these managers can identify and access the most valuable technology information resources (publications, patents, etc.); search, retrieve, and clean the information on topics of interest; and lower the costs and enhance the benefits of competitive technological intelligence operations.
Release

The BUGS Book

A Practical Introduction to Bayesian Analysis

Author: David Lunn,Chris Jackson,Nicky Best,Andrew Thomas,David Spiegelhalter

Publisher: CRC Press

ISBN: 1466586664

Category: Mathematics

Page: 399

View: 2356

Bayesian statistical methods have become widely used for data analysis and modelling in recent years, and the BUGS software has become the most popular software for Bayesian analysis worldwide. Authored by the team that originally developed this software, The BUGS Book provides a practical introduction to this program and its use. The text presents complete coverage of all the functionalities of BUGS, including prediction, missing data, model criticism, and prior sensitivity. It also features a large number of worked examples and a wide range of applications from various disciplines. The book introduces regression models, techniques for criticism and comparison, and a wide range of modelling issues before going into the vital area of hierarchical models, one of the most common applications of Bayesian methods. It deals with essentials of modelling without getting bogged down in complexity. The book emphasises model criticism, model comparison, sensitivity analysis to alternative priors, and thoughtful choice of prior distributions—all those aspects of the "art" of modelling that are easily overlooked in more theoretical expositions. More pragmatic than ideological, the authors systematically work through the large range of "tricks" that reveal the real power of the BUGS software, for example, dealing with missing data, censoring, grouped data, prediction, ranking, parameter constraints, and so on. Many of the examples are biostatistical, but they do not require domain knowledge and are generalisable to a wide range of other application areas. Full code and data for examples, exercises, and some solutions can be found on the book’s website.
Release

Python for R Users

A Data Science Approach

Author: Ajay Ohri

Publisher: John Wiley & Sons

ISBN: 1119126762

Category: Computers

Page: 368

View: 8462

The definitive guide for statisticians and data scientists who understand the advantages of becoming proficient in both R and Python The first book of its kind, Python for R Users: A Data Science Approach makes it easy for R programmers to code in Python and Python users to program in R. Short on theory and long on actionable analytics, it provides readers with a detailed comparative introduction and overview of both languages and features concise tutorials with command-by-command translations—complete with sample code—of R to Python and Python to R. Following an introduction to both languages, the author cuts to the chase with step-by-step coverage of the full range of pertinent programming features and functions, including data input, data inspection/data quality, data analysis, and data visualization. Statistical modeling, machine learning, and data mining—including supervised and unsupervised data mining methods—are treated in detail, as are time series forecasting, text mining, and natural language processing. • Features a quick-learning format with concise tutorials and actionable analytics • Provides command-by-command translations of R to Python and vice versa • Incorporates Python and R code throughout to make it easier for readers to compare and contrast features in both languages • Offers numerous comparative examples and applications in both programming languages • Designed for use for practitioners and students that know one language and want to learn the other • Supplies slides useful for teaching and learning either software on a companion website Python for R Users: A Data Science Approach is a valuable working resource for computer scientists and data scientists that know R and would like to learn Python or are familiar with Python and want to learn R. It also functions as textbook for students of computer science and statistics. A. Ohri is the founder of Decisionstats.com and currently works as a senior data scientist. He has advised multiple startups in analytics off-shoring, analytics services, and analytics education, as well as using social media to enhance buzz for analytics products. Mr. Ohri's research interests include spreading open source analytics, analyzing social media manipulation with mechanism design, simpler interfaces for cloud computing, investigating climate change and knowledge flows. His other books include R for Business Analytics and R for Cloud Computing.
Release

Learning IBM Watson Analytics

Author: James D Miller

Publisher: Packt Publishing Ltd

ISBN: 1785882805

Category: Computers

Page: 244

View: 918

Make the most advanced predictive analytical processes easy using Watson Analytics with this easy-to-follow practical guide About This Book This is the first and the only book on IBM Watson Analytics, and it shows you how to leverage Watson in an enterprise environment through rich use cases Incorporate Watson Analytics into your business strategy and confidently add this cutting edge expertise to your resume This book is written by James D Miller, IBM-certified expert and accomplished Director and Sr. Project Leader Who This Book Is For If you want to perform data discovery and analysis and make sense of data you have, this book for you. Data scientists can also use this book to explore a new way to perform data analysis tasks on cloud with ease. This book does not require a programming background. What You Will Learn Study the language of Watson while you discover how easy it is to access and configure Review what a Watson use case is, why it's important, and how to identify one Design Watson Analytical solutions based upon your use cases Understand the basic concepts behind the content analysis cycle and where Watson fits in Explore all the features of Watson, such as Explore, Predict, and Assemble Customize and extend your Watson solutions Use Watson at the Enterprise level Integrate Watson with other toolsets In Detail Today, only a small portion of businesses actually use a real analytical tool as part of routine decision making. IBM Watson Analytics is changing that making the most advanced and predictive analytical techniques understandable and usable for any industry. This book will be the vital tour guide for your trip, starting with what IBM Watson Analytics is. We'll start off with introduction to Watson Analytics and then quickly move on to various use cases under which one can use the different analytics functionalities offered by Watson. During the course of the book, you will learn how to design solutions, and customize and extend Watson analytics. We will conclude by taking Watson Analytics to enterprise and integrating it with other solutions (other IBM solutions and analytics). Now is the time for you to learn IBM Watson to compete in the world. Style and approach Watson provides individuals with the ability to perform sophisticated data discovery and analysis without all of the complexity that usually goes along with it. This book will get you started with Watson analytics and how you can use it in day-to-day data analysis. The book introduces the key concepts and terminology and then uses practical use case examples to reinforce your understanding.
Release