Crowdsourcing and Knowledge Management in Contemporary Business Environments

Author: Lenart-Gansiniec, Regina

Publisher: IGI Global

ISBN: 1522542019

Category: Business & Economics

Page: 304

View: 6835

In an era of an economy based on knowledge and Web 2.0 technology, knowledge is the foundation for improving the decision-making processes and relations between people both in and outside of an organization. Providing new and unique sources of knowledge outside organizations enables innovation and shapes competitive advantage. Crowdsourcing and Knowledge Management in Contemporary Business Environments is a collection of innovative research on the methods and applications of crowdsourcing in collaboration, idea implementation, and organizational development. Highlighting a range of topics including data analytics, crowd computing, and open innovation, this book is ideally designed for business managers, business professionals, business and social researchers, graduate-level students, and academicians seeking current research on the mechanisms of knowledge management in crowdsourcing.
Release

Big Data Analytics for Entrepreneurial Success

Author: Sedkaoui, Soraya

Publisher: IGI Global

ISBN: 152257610X

Category: Business & Economics

Page: 300

View: 2155

In a resolutely practical and data-driven project universe, the digital age changed the way data is collected, stored, analyzed, visualized and protected, transforming business opportunities and strategies. It is important for today’s organizations and entrepreneurs to implement a robust data strategy and industrialize a set of “data-driven” solutions to utilize big data analytics to its fullest potential. Big Data Analytics for Entrepreneurial Success provides emerging perspectives on the theoretical and practical aspects of data analysis tools and techniques within business applications. Featuring coverage on a broad range of topics such as algorithms, data collection, and machine learning, this publication provides concrete examples and case studies of successful uses of data-driven projects as well as the challenges and opportunities of generating value from data using analytics. It is ideally designed for entrepreneurs, researchers, business owners, managers, graduate students, academicians, software developers, and IT professionals seeking current research on the essential tools and technologies for organizing, analyzing, and benefiting from big data.
Release

Data Analytics and Big Data

Author: Soraya Sedkaoui

Publisher: John Wiley & Sons

ISBN: 1119528062

Category: Computers

Page: 220

View: 7997

The main purpose of this book is to investigate, explore and describe approaches and methods to facilitate data understanding through analytics solutions based on its principles, concepts and applications. But analyzing data is also about involving the use of software. For this, and in order to cover some aspect of data analytics, this book uses software (Excel, SPSS, Python, etc) which can help readers to better understand the analytics process in simple terms and supporting useful methods in its application.
Release

Big Data Analytics in HIV/AIDS Research

Author: Al Mazari, Ali

Publisher: IGI Global

ISBN: 1522532048

Category: Medical

Page: 294

View: 5111

With the advent of new technologies in big data science, the study of medical problems has made significant progress. Connecting medical studies and computational methods is crucial for the advancement of the medical industry. Big Data Analytics in HIV/AIDS Research provides emerging research on the development and implementation of computational techniques in big data analysis for biological and medical practices. While highlighting topics such as deep learning, management software, and molecular modeling, this publication explores the various applications of data analysis in clinical decision making. This book is a vital resource for medical practitioners, nurses, scientists, researchers, and students seeking current research on the connections between data analytics in the field of medicine.
Release

Handbook of Statistical Analysis and Data Mining Applications

Author: Robert Nisbet,Gary Miner,Ken Yale

Publisher: Elsevier

ISBN: 0124166458

Category: Mathematics

Page: 822

View: 5383

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Release

Analytics in a Big Data World

The Essential Guide to Data Science and its Applications

Author: Bart Baesens

Publisher: John Wiley & Sons

ISBN: 1118892747

Category: Business & Economics

Page: 256

View: 4514

The guide to targeting and leveraging business opportunities using big data & analytics By leveraging big data & analytics, businesses create the potential to better understand, manage, and strategically exploiting the complex dynamics of customer behavior. Analytics in a Big Data World reveals how to tap into the powerful tool of data analytics to create a strategic advantage and identify new business opportunities. Designed to be an accessible resource, this essential book does not include exhaustive coverage of all analytical techniques, instead focusing on analytics techniques that really provide added value in business environments. The book draws on author Bart Baesens' expertise on the topics of big data, analytics and its applications in e.g. credit risk, marketing, and fraud to provide a clear roadmap for organizations that want to use data analytics to their advantage, but need a good starting point. Baesens has conducted extensive research on big data, analytics, customer relationship management, web analytics, fraud detection, and credit risk management, and uses this experience to bring clarity to a complex topic. Includes numerous case studies on risk management, fraud detection, customer relationship management, and web analytics Offers the results of research and the author's personal experience in banking, retail, and government Contains an overview of the visionary ideas and current developments on the strategic use of analytics for business Covers the topic of data analytics in easy-to-understand terms without an undo emphasis on mathematics and the minutiae of statistical analysis For organizations looking to enhance their capabilities via data analytics, this resource is the go-to reference for leveraging data to enhance business capabilities.
Release

Big Data, Data Mining, and Machine Learning

Value Creation for Business Leaders and Practitioners

Author: Jared Dean

Publisher: John Wiley & Sons

ISBN: 1118920708

Category: Computers

Page: 288

View: 1808

With big data analytics comes big insights into profitability Big data is big business. But having the data and the computational power to process it isn't nearly enough to produce meaningful results. Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners is a complete resource for technology and marketing executives looking to cut through the hype and produce real results that hit the bottom line. Providing an engaging, thorough overview of the current state of big data analytics and the growing trend toward high performance computing architectures, the book is a detail-driven look into how big data analytics can be leveraged to foster positive change and drive efficiency. With continued exponential growth in data and ever more competitive markets, businesses must adapt quickly to gain every competitive advantage available. Big data analytics can serve as the linchpin for initiatives that drive business, but only if the underlying technology and analysis is fully understood and appreciated by engaged stakeholders. This book provides a view into the topic that executives, managers, and practitioners require, and includes: A complete overview of big data and its notable characteristics Details on high performance computing architectures for analytics, massively parallel processing (MPP), and in-memory databases Comprehensive coverage of data mining, text analytics, and machine learning algorithms A discussion of explanatory and predictive modeling, and how they can be applied to decision-making processes Big Data, Data Mining, and Machine Learning provides technology and marketing executives with the complete resource that has been notably absent from the veritable libraries of published books on the topic. Take control of your organization's big data analytics to produce real results with a resource that is comprehensive in scope and light on hyperbole.
Release

Fundamentals of Machine Learning for Predictive Data Analytics

Algorithms, Worked Examples, and Case Studies

Author: John D. Kelleher,Brian Mac Namee,Aoife D'Arcy

Publisher: MIT Press

ISBN: 0262029448

Category: Computers

Page: 624

View: 7692

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.
Release

Numsense! Data Science for the Layman

No Math Added

Author: Annalyn Ng

Publisher: Annalyn Ng & Kenneth Soo

ISBN: 9789811110689

Category:

Page: N.A

View: 2627

Used in Stanford's CS102 Big Data (Spring 2017) course. Want to get started on data science? Our promise: no math added. This book has been written in layman's terms as a gentle introduction to data science and its algorithms. Each algorithm has its own dedicated chapter that explains how it works, and shows an example of a real-world application. To help you grasp key concepts, we stick to intuitive explanations, as well as lots of visuals, all of which are colorblind-friendly. Popular concepts covered include: A/B Testing Anomaly Detection Association Rules Clustering Decision Trees and Random Forests Regression Analysis Social Network Analysis Neural Networks Features: Intuitive explanations and visuals Real-world applications to illustrate each algorithm Point summaries at the end of each chapter Reference sheets comparing the pros and cons of algorithms Glossary list of commonly-used terms With this book, we hope to give you a practical understanding of data science, so that you, too, can leverage its strengths in making better decisions.
Release

Big Data Application in Power Systems

Author: Reza Arghandeh,Yuxun Zhou

Publisher: Elsevier

ISBN: 0128119691

Category: Science

Page: 480

View: 4269

Big Data Application in Power Systems brings together experts from academia, industry and regulatory agencies who share their understanding and discuss the big data analytics applications for power systems diagnostics, operation and control. Recent developments in monitoring systems and sensor networks dramatically increase the variety, volume and velocity of measurement data in electricity transmission and distribution level. The book focuses on rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches to process high dimensional, heterogeneous and spatiotemporal data. The book chapters discuss challenges, opportunities, success stories and pathways for utilizing big data value in smart grids. Provides expert analysis of the latest developments by global authorities Contains detailed references for further reading and extended research Provides additional cross-disciplinary lessons learned from broad disciplines such as statistics, computer science and bioinformatics Focuses on rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches to process high dimensional, heterogeneous and spatiotemporal data
Release

Predictive Analytics

The Power to Predict Who Will Click, Buy, Lie, or Die

Author: Eric Siegel

Publisher: John Wiley & Sons

ISBN: 1119145686

Category: Business & Economics

Page: 368

View: 2874

"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive Analytics unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated — and Hillary for America 2016 plans to calculate — the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics.
Release

R for Data Science

Import, Tidy, Transform, Visualize, and Model Data

Author: Hadley Wickham,Garrett Grolemund

Publisher: "O'Reilly Media, Inc."

ISBN: 1491910364

Category: Computers

Page: 520

View: 352

Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way. You’ll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Release

Data Smart

Using Data Science to Transform Information into Insight

Author: John W. Foreman

Publisher: John Wiley & Sons

ISBN: 1118839862

Category: Business & Economics

Page: 432

View: 985

Data Science gets thrown around in the press like it's magic. Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions. But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope. Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data. Each chapter will cover a different technique in a spreadsheet so you can follow along: Mathematical optimization, including non-linear programming and genetic algorithms Clustering via k-means, spherical k-means, and graph modularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, and bag-of-words models Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.
Release

Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications

Author: Gary Miner

Publisher: Academic Press

ISBN: 012386979X

Category: Mathematics

Page: 1053

View: 3161

The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase dramatically. This comprehensive professional reference brings together all the information, tools and methods a professional will need to efficiently use text mining applications and statistical analysis. The Handbook of Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications presents a comprehensive how- to reference that shows the user how to conduct text mining and statistically analyze results. In addition to providing an in-depth examination of core text mining and link detection tools, methods and operations, the book examines advanced preprocessing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection using real world example tutorials in such varied fields as corporate, finance, business intelligence, genomics research, and counterterrorism activities. -Extensive case studies, most in a tutorial format, allow the reader to 'click through' the example using a software program, thus learning to conduct text mining analyses in the most rapid manner of learning possible -Numerous examples, tutorials, power points and datasets available via companion website on Elsevierdirect.com -Glossary of text mining terms provided in the appendix
Release

SAS Viya

The R Perspective

Author: Yue Qi,Kevin D. Smith,Xiangxiang Meng

Publisher: SAS Institute

ISBN: 1635267013

Category: Computers

Page: 196

View: 8631

Learn how to access analytics from SAS Cloud Analytic Services (CAS) using R and the SAS Viya platform. SAS Viya : The R Perspective is a general-purpose introduction to using R with the SAS Viya platform. SAS Viya is a high-performance, fault-tolerant analytics architecture that can be deployed on both public and private cloud infrastructures. This book introduces an entirely new way of using SAS statistics from R, taking users step-by-step from installation and fundamentals to data exploration and modeling. SAS Viya is made up of multiple components. The central piece of this ecosystem is SAS Cloud Analytic Services (CAS). CAS is the cloud-based server that all clients communicate with to run analytical methods. While SAS Viya can be used by various SAS applications, it also enables you to access analytic methods from SAS, R, Python, Lua, and Java, as well as through a REST interface using HTTP or HTTPS. The R client is used to drive the CAS component directly using commands and actions that are familiar to R programmers. Key features of this book include: Connecting to CAS from R Loading, managing, and exploring CAS Data from R Executing CAS actions and processing the results Handling CAS action errors Modeling continuous and categorical data This book is intended for R users who want to access SAS analytics as well as SAS users who are interested in trying R. Familiarity with R would be helpful before using this book although knowledge of CAS is not required. However, you will need to have a CAS server set up and running to execute the examples in this book.
Release

Managerial Analytics

An Applied Guide to Principles, Methods, Tools, and Best Practices

Author: Michael Watson,Derek Nelson

Publisher: Pearson Education

ISBN: 013340742X

Category: Business & Economics

Page: 236

View: 5336

The field of analytics is rapidly evolving, making it difficult for professionals and students to keep up the most current and effective applications. Managerial Analytics will help readers sort through all these new options and identify the appropriate solution. In this reference, authors Watson, Nelson and Cacioppi accurately define and identify the components of analytics and big data, giving readers the knowledge needed to effectively assess new aspects and applications. Building on this foundation, they review tools and solutions, identify the offerings best aligned to one's requirements, and show how to tailor analytics applications to an organization's specific needs. Drawing on extensive experience implementing, planning, and researching advanced analytics for business, the authors clearly explain all this, and more: What analytics is and isn't: great examples of successful usage – and other examples where the term is being degraded into meaninglessness The difference between using analytics and “competing on analytics” How to get started with big data, by analyzing the most relevant data Components of analytics systems, from databases and Excel to BI systems and beyond Anticipating and overcoming “confirmation bias” and other pitfalls Understanding predictive analytics and getting the high-quality random samples necessary Applying game theory, Efficient Frontier, benchmarking, and revenue management models Implementing optimization at the small and large scale, and using it to make “automatic decisions”
Release

An Introduction to Statistical Learning

with Applications in R

Author: Gareth James,Daniela Witten,Trevor Hastie,Robert Tibshirani

Publisher: Springer Science & Business Media

ISBN: 1461471389

Category: Mathematics

Page: 426

View: 4862

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Release