CUDA for Engineers

An Introduction to High-Performance Parallel Computing

Author: Duane Storti,Mete Yurtoglu

Publisher: Addison-Wesley Professional

ISBN: 013417755X

Category: Computers

Page: 352

View: 7298

CUDA for Engineers gives you direct, hands-on engagement with personal, high-performance parallel computing, enabling you to do computations on a gaming-level PC that would have required a supercomputer just a few years ago. The authors introduce the essentials of CUDA C programming clearly and concisely, quickly guiding you from running sample programs to building your own code. Throughout, you’ll learn from complete examples you can build, run, and modify, complemented by additional projects that deepen your understanding. All projects are fully developed, with detailed building instructions for all major platforms. Ideal for any scientist, engineer, or student with at least introductory programming experience, this guide assumes no specialized background in GPU-based or parallel computing. In an appendix, the authors also present a refresher on C programming for those who need it. Coverage includes Preparing your computer to run CUDA programs Understanding CUDA’s parallelism model and C extensions Transferring data between CPU and GPU Managing timing, profiling, error handling, and debugging Creating 2D grids Interoperating with OpenGL to provide real-time user interactivity Performing basic simulations with differential equations Using stencils to manage related computations across threads Exploiting CUDA’s shared memory capability to enhance performance Interacting with 3D data: slicing, volume rendering, and ray casting Using CUDA libraries Finding more CUDA resources and code Realistic example applications include Visualizing functions in 2D and 3D Solving differential equations while changing initial or boundary conditions Viewing/processing images or image stacks Computing inner products and centroids Solving systems of linear algebraic equations Monte-Carlo computations
Release

CUDA Programming

A Developer's Guide to Parallel Computing with GPUs

Author: Shane Cook

Publisher: Newnes

ISBN: 0124159338

Category: Computers

Page: 576

View: 8380

If you need to learn CUDA but don't have experience with parallel computing, CUDA Programming: A Developer's Introduction offers a detailed guide to CUDA with a grounding in parallel fundamentals. It starts by introducing CUDA and bringing you up to speed on GPU parallelism and hardware, then delving into CUDA installation. Chapters on core concepts including threads, blocks, grids, and memory focus on both parallel and CUDA-specific issues. Later, the book demonstrates CUDA in practice for optimizing applications, adjusting to new hardware, and solving common problems. Comprehensive introduction to parallel programming with CUDA, for readers new to both Detailed instructions help readers optimize the CUDA software development kit Practical techniques illustrate working with memory, threads, algorithms, resources, and more Covers CUDA on multiple hardware platforms: Mac, Linux and Windows with several NVIDIA chipsets Each chapter includes exercises to test reader knowledge
Release

CUDA by Example

An Introduction to General-Purpose GPU Programming, Portable Documents

Author: Jason Sanders,Edward Kandrot

Publisher: Addison-Wesley Professional

ISBN: 0132180138

Category: Computers

Page: 312

View: 9781

CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required—just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You’ll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources All the CUDA software tools you’ll need are freely available for download from NVIDIA. http://developer.nvidia.com/object/cuda-by-example.html
Release

CUDA Application Design and Development

Author: Rob Farber

Publisher: Elsevier

ISBN: 0123884268

Category: Computers

Page: 315

View: 8704

Machine generated contents note: 1. How to think in CUDA 2. Tools to build, debug and profile 3. The GPU performance envelope 4. The CUDA memory subsystems 5. Exploiting the CUDA execution grid 6. MultiGPU applications and scaling 7. Numerical CUDA, libraries and high-level language bindings 8. Mixing CUDA with rendering 9. High Performance Machine Learning 10. Scientific Visualization 11. Multimedia with OpenCV 12. Ultra Low-power Devices: Tegra.
Release

An Introduction to Parallel Programming

Author: Peter Pacheco

Publisher: Elsevier

ISBN: 9780080921440

Category: Computers

Page: 392

View: 2793

An Introduction to Parallel Programming is the first undergraduate text to directly address compiling and running parallel programs on the new multi-core and cluster architecture. It explains how to design, debug, and evaluate the performance of distributed and shared-memory programs. The author Peter Pacheco uses a tutorial approach to show students how to develop effective parallel programs with MPI, Pthreads, and OpenMP, starting with small programming examples and building progressively to more challenging ones. The text is written for students in undergraduate parallel programming or parallel computing courses designed for the computer science major or as a service course to other departments; professionals with no background in parallel computing. Takes a tutorial approach, starting with small programming examples and building progressively to more challenging examples Focuses on designing, debugging and evaluating the performance of distributed and shared-memory programs Explains how to develop parallel programs using MPI, Pthreads, and OpenMP programming models
Release

Introduction to High Performance Computing for Scientists and Engineers

Author: Georg Hager,Gerhard Wellein

Publisher: CRC Press

ISBN: 9781439811931

Category: Computers

Page: 356

View: 7646

Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the authors gained a unique perspective on the requirements and attitudes of users as well as manufacturers of parallel computers. The text first introduces the architecture of modern cache-based microprocessors and discusses their inherent performance limitations, before describing general optimization strategies for serial code on cache-based architectures. It next covers shared- and distributed-memory parallel computer architectures and the most relevant network topologies. After discussing parallel computing on a theoretical level, the authors show how to avoid or ameliorate typical performance problems connected with OpenMP. They then present cache-coherent nonuniform memory access (ccNUMA) optimization techniques, examine distributed-memory parallel programming with message passing interface (MPI), and explain how to write efficient MPI code. The final chapter focuses on hybrid programming with MPI and OpenMP. Users of high performance computers often have no idea what factors limit time to solution and whether it makes sense to think about optimization at all. This book facilitates an intuitive understanding of performance limitations without relying on heavy computer science knowledge. It also prepares readers for studying more advanced literature. Read about the authors’ recent honor: Informatics Europe Curriculum Best Practices Award for Parallelism and Concurrency
Release

CUDA Fortran for Scientists and Engineers

Best Practices for Efficient CUDA Fortran Programming

Author: Gregory Ruetsch,Massimiliano Fatica

Publisher: Elsevier

ISBN: 0124169724

Category: Computers

Page: 338

View: 7054

CUDA Fortran for Scientists and Engineers shows how high-performance application developers can leverage the power of GPUs using Fortran, the familiar language of scientific computing and supercomputer performance benchmarking. The authors presume no prior parallel computing experience, and cover the basics along with best practices for efficient GPU computing using CUDA Fortran. To help you add CUDA Fortran to existing Fortran codes, the book explains how to understand the target GPU architecture, identify computationally intensive parts of the code, and modify the code to manage the data and parallelism and optimize performance. All of this is done in Fortran, without having to rewrite in another language. Each concept is illustrated with actual examples so you can immediately evaluate the performance of your code in comparison. Leverage the power of GPU computing with PGI’s CUDA Fortran compiler Gain insights from members of the CUDA Fortran language development team Includes multi-GPU programming in CUDA Fortran, covering both peer-to-peer and message passing interface (MPI) approaches Includes full source code for all the examples and several case studies Download source code and slides from the book's companion website
Release

The CUDA Handbook

A Comprehensive Guide to GPU Programming

Author: Nicholas Wilt

Publisher: Addison-Wesley

ISBN: 0133261506

Category: Computers

Page: 528

View: 8641

The CUDA Handbook begins where CUDA by Example (Addison-Wesley, 2011) leaves off, discussing CUDA hardware and software in greater detail and covering both CUDA 5.0 and Kepler. Every CUDA developer, from the casual to the most sophisticated, will find something here of interest and immediate usefulness. Newer CUDA developers will see how the hardware processes commands and how the driver checks progress; more experienced CUDA developers will appreciate the expert coverage of topics such as the driver API and context migration, as well as the guidance on how best to structure CPU/GPU data interchange and synchronization. The accompanying open source code–more than 25,000 lines of it, freely available at www.cudahandbook.com–is specifically intended to be reused and repurposed by developers. Designed to be both a comprehensive reference and a practical cookbook, the text is divided into the following three parts: Part I, Overview, gives high-level descriptions of the hardware and software that make CUDA possible. Part II, Details, provides thorough descriptions of every aspect of CUDA, including Memory Streams and events Models of execution, including the dynamic parallelism feature, new with CUDA 5.0 and SM 3.5 The streaming multiprocessors, including descriptions of all features through SM 3.5 Programming multiple GPUs Texturing The source code accompanying Part II is presented as reusable microbenchmarks and microdemos, designed to expose specific hardware characteristics or highlight specific use cases. Part III, Select Applications, details specific families of CUDA applications and key parallel algorithms, including Streaming workloads Reduction Parallel prefix sum (Scan) N-body Image Processing These algorithms cover the full range of potential CUDA applications.
Release

Multicore and GPU Programming

An Integrated Approach

Author: Gerassimos Barlas

Publisher: Elsevier

ISBN: 0124171400

Category: Computers

Page: 698

View: 2747

Multicore and GPU Programming offers broad coverage of the key parallel computing skillsets: multicore CPU programming and manycore "massively parallel" computing. Using threads, OpenMP, MPI, and CUDA, it teaches the design and development of software capable of taking advantage of today’s computing platforms incorporating CPU and GPU hardware and explains how to transition from sequential programming to a parallel computing paradigm. Presenting material refined over more than a decade of teaching parallel computing, author Gerassimos Barlas minimizes the challenge with multiple examples, extensive case studies, and full source code. Using this book, you can develop programs that run over distributed memory machines using MPI, create multi-threaded applications with either libraries or directives, write optimized applications that balance the workload between available computing resources, and profile and debug programs targeting multicore machines. Comprehensive coverage of all major multicore programming tools, including threads, OpenMP, MPI, and CUDA Demonstrates parallel programming design patterns and examples of how different tools and paradigms can be integrated for superior performance Particular focus on the emerging area of divisible load theory and its impact on load balancing and distributed systems Download source code, examples, and instructor support materials on the book's companion website
Release

Programming Massively Parallel Processors

A Hands-on Approach

Author: David B. Kirk,Wen-mei W. Hwu

Publisher: Morgan Kaufmann

ISBN: 012811987X

Category: Computers

Page: 576

View: 361

Programming Massively Parallel Processors: A Hands-on Approach, Third Edition shows both student and professional alike the basic concepts of parallel programming and GPU architecture, exploring, in detail, various techniques for constructing parallel programs. Case studies demonstrate the development process, detailing computational thinking and ending with effective and efficient parallel programs. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in-depth. For this new edition, the authors have updated their coverage of CUDA, including coverage of newer libraries, such as CuDNN, moved content that has become less important to appendices, added two new chapters on parallel patterns, and updated case studies to reflect current industry practices. Teaches computational thinking and problem-solving techniques that facilitate high-performance parallel computing Utilizes CUDA version 7.5, NVIDIA's software development tool created specifically for massively parallel environments Contains new and updated case studies Includes coverage of newer libraries, such as CuDNN for Deep Learning
Release

GPU Programming in MATLAB

Author: Nikolaos Ploskas,Nikolaos Samaras

Publisher: Morgan Kaufmann

ISBN: 0128051337

Category: Computers

Page: 318

View: 3991

GPU programming in MATLAB is intended for scientists, engineers, or students who develop or maintain applications in MATLAB and would like to accelerate their codes using GPU programming without losing the many benefits of MATLAB. The book starts with coverage of the Parallel Computing Toolbox and other MATLAB toolboxes for GPU computing, which allow applications to be ported straightforwardly onto GPUs without extensive knowledge of GPU programming. The next part covers built-in, GPU-enabled features of MATLAB, including options to leverage GPUs across multicore or different computer systems. Finally, advanced material includes CUDA code in MATLAB and optimizing existing GPU applications. Throughout the book, examples and source codes illustrate every concept so that readers can immediately apply them to their own development. Provides in-depth, comprehensive coverage of GPUs with MATLAB, including the parallel computing toolbox and built-in features for other MATLAB toolboxes Explains how to accelerate computationally heavy applications in MATLAB without the need to re-write them in another language Presents case studies illustrating key concepts across multiple fields Includes source code, sample datasets, and lecture slides
Release

GPU Parallel Program Development Using CUDA

Author: Tolga Soyata

Publisher: CRC Press

ISBN: 1498750761

Category: Mathematics

Page: 440

View: 2484

GPU Parallel Program Development using CUDA teaches GPU programming by showing the differences among different families of GPUs. This approach prepares the reader for the next generation and future generations of GPUs. The book emphasizes concepts that will remain relevant for a long time, rather than concepts that are platform-specific. At the same time, the book also provides platform-dependent explanations that are as valuable as generalized GPU concepts. The book consists of three separate parts; it starts by explaining parallelism using CPU multi-threading in Part I. A few simple programs are used to demonstrate the concept of dividing a large task into multiple parallel sub-tasks and mapping them to CPU threads. Multiple ways of parallelizing the same task are analyzed and their pros/cons are studied in terms of both core and memory operation. Part II of the book introduces GPU massive parallelism. The same programs are parallelized on multiple Nvidia GPU platforms and the same performance analysis is repeated. Because the core and memory structures of CPUs and GPUs are different, the results differ in interesting ways. The end goal is to make programmers aware of all the good ideas, as well as the bad ideas, so readers can apply the good ideas and avoid the bad ideas in their own programs. Part III of the book provides pointer for readers who want to expand their horizons. It provides a brief introduction to popular CUDA libraries (such as cuBLAS, cuFFT, NPP, and Thrust),the OpenCL programming language, an overview of GPU programming using other programming languages and API libraries (such as Python, OpenCV, OpenGL, and Apple’s Swift and Metal,) and the deep learning library cuDNN.
Release

Parallel Programming for Modern High Performance Computing Systems

Author: Pawel Czarnul

Publisher: CRC Press

ISBN: 1351385798

Category: Business & Economics

Page: 304

View: 2337

In view of the growing presence and popularity of multicore and manycore processors, accelerators, and coprocessors, as well as clusters using such computing devices, the development of efficient parallel applications has become a key challenge to be able to exploit the performance of such systems. This book covers the scope of parallel programming for modern high performance computing systems. It first discusses selected and popular state-of-the-art computing devices and systems available today, These include multicore CPUs, manycore (co)processors, such as Intel Xeon Phi, accelerators, such as GPUs, and clusters, as well as programming models supported on these platforms. It next introduces parallelization through important programming paradigms, such as master-slave, geometric Single Program Multiple Data (SPMD) and divide-and-conquer. The practical and useful elements of the most popular and important APIs for programming parallel HPC systems are discussed, including MPI, OpenMP, Pthreads, CUDA, OpenCL, and OpenACC. It also demonstrates, through selected code listings, how selected APIs can be used to implement important programming paradigms. Furthermore, it shows how the codes can be compiled and executed in a Linux environment. The book also presents hybrid codes that integrate selected APIs for potentially multi-level parallelization and utilization of heterogeneous resources, and it shows how to use modern elements of these APIs. Selected optimization techniques are also included, such as overlapping communication and computations implemented using various APIs. Features: Discusses the popular and currently available computing devices and cluster systems Includes typical paradigms used in parallel programs Explores popular APIs for programming parallel applications Provides code templates that can be used for implementation of paradigms Provides hybrid code examples allowing multi-level parallelization Covers the optimization of parallel programs
Release

Parallel Computing for Data Science

With Examples in R, C++ and CUDA

Author: Norman Matloff

Publisher: CRC Press

ISBN: 1466587032

Category: Computers

Page: 328

View: 6722

Parallel Computing for Data Science: With Examples in R, C++ and CUDA is one of the first parallel computing books to concentrate exclusively on parallel data structures, algorithms, software tools, and applications in data science. It includes examples not only from the classic "n observations, p variables" matrix format but also from time series, network graph models, and numerous other structures common in data science. The examples illustrate the range of issues encountered in parallel programming. With the main focus on computation, the book shows how to compute on three types of platforms: multicore systems, clusters, and graphics processing units (GPUs). It also discusses software packages that span more than one type of hardware and can be used from more than one type of programming language. Readers will find that the foundation established in this book will generalize well to other languages, such as Python and Julia.
Release

Parallel Programming

Concepts and Practice

Author: Bertil Schmidt,Jorge Gonzalez-Dominguez,Christian Hundt,Moritz Schlarb

Publisher: Morgan Kaufmann

ISBN: 0128044861

Category: Computers

Page: 416

View: 5871

Parallel Programming: Concepts and Practice provides an upper level introduction to parallel programming. In addition to covering general parallelism concepts, this text teaches practical programming skills for both shared memory and distributed memory architectures. The authors’ open-source system for automated code evaluation provides easy access to parallel computing resources, making the book particularly suitable for classroom settings. Covers parallel programming approaches for single computer nodes and HPC clusters: OpenMP, multithreading, SIMD vectorization, MPI, UPC++ Contains numerous practical parallel programming exercises Includes access to an automated code evaluation tool that enables students the opportunity to program in a web browser and receive immediate feedback on the result validity of their program Features an example-based teaching of concept to enhance learning outcomes
Release

OpenACC for Programmers

Concepts and Strategies

Author: Sunita Chandrasekaran,Guido Juckeland

Publisher: Addison-Wesley Professional

ISBN: 0134694341

Category: Computers

Page: 320

View: 8444

The Complete Guide to OpenACC for Massively Parallel Programming Scientists and technical professionals can use OpenACC to leverage the immense power of modern GPUs without the complexity traditionally associated with programming them. OpenACC™ for Programmers is one of the first comprehensive and practical overviews of OpenACC for massively parallel programming. This book integrates contributions from 19 leading parallel-programming experts from academia, public research organizations, and industry. The authors and editors explain each key concept behind OpenACC, demonstrate how to use essential OpenACC development tools, and thoroughly explore each OpenACC feature set. Throughout, you’ll find realistic examples, hands-on exercises, and case studies showcasing the efficient use of OpenACC language constructs. You’ll discover how OpenACC’s language constructs can be translated to maximize application performance, and how its standard interface can target multiple platforms via widely used programming languages. Each chapter builds on what you’ve already learned, helping you build practical mastery one step at a time, whether you’re a GPU programmer, scientist, engineer, or student. All example code and exercise solutions are available for download at GitHub. Discover how OpenACC makes scalable parallel programming easier and more practical Walk through the OpenACC spec and learn how OpenACC directive syntax is structured Get productive with OpenACC code editors, compilers, debuggers, and performance analysis tools Build your first real-world OpenACC programs Exploit loop-level parallelism in OpenACC, understand the levels of parallelism available, and maximize accuracy or performance Learn how OpenACC programs are compiled Master OpenACC programming best practices Overcome common performance, portability, and interoperability challenges Efficiently distribute tasks across multiple processors Register your product at informit.com/register for convenient access to downloads, updates, and/or corrections as they become available.
Release

OpenCL in Action

How to Accelerate Graphics and Computation

Author: Matthew Scarpino

Publisher: Manning Publications

ISBN: 9781617290176

Category: Computers

Page: 434

View: 3278

"OpenCL in Action blends the theory of parallel computing with the practical reality of building high-performance applications using OpenCL. It first guides you through the fundamental data structures in an intuitive manner. Then, it explains techniques for high-speed sorting, image processing, matrix operations, and fast Fourier transform. The book concludes with a deep look at the all-important subject of graphics acceleration. Numerous challenging examples give you different ways to experiment with working code."--Pub. desc.
Release

Multicore Application Programming

For Windows, Linux, and Oracle Solaris

Author: Darryl Gove

Publisher: Addison-Wesley Professional

ISBN: 0321711378

Category: Computers

Page: 441

View: 6598

Multicore Application Programming is a comprehensive, practical guide to high-performance multicore programming that any experienced developer can use. Author Darryl Gove covers the leanding approaches to parallelization on Windows, Linux, and Oracle Solaris. Through practical examples, he illuminates the challenges involved in writing applications that fully utilize multicore processors, helping you produce appllications that are functionally correct, offer superior performance, and scale well to eight cores, sixteen Cores, and beyond. The book reveals how specific hardware implementations impact application performance and shows how to avoid common pitfalls. Step by step, you'll write applications that can handle large numbers of parallel threads, and you'll master advanced parallelization techniques. Multicore Application Programming isn't wedded to a single approach or platform: It is for every experienced C programmer working with any contemporary multicore processor in any leading operating system environment.
Release