axịomTM

The Scientific Computation System

Author: Richard D. Jenks,Robert S. Sutor

Publisher: Springer

ISBN: 1461229405

Category: Mathematics

Page: 742

View: 4556

Recent advances in hardware performance and software technology have made possible a wholly different approach to computational mathematics. Symbolic computation systems have revolutionized the field, building upon established and recent mathematical theory to open new possibilities in virtually every industry. Formerly dubbed Scratchpad, AXIOM is a powerful new symbolic and numerical system developed at the IBM Thomas J. Watson Research Center. AXIOM's scope, structure, and organization make it outstanding among computer algebra systems. AXIOM: The Scientific Computation System is a companion to the AXIOM system. The text is written in a straightforward style and begins with a spirited foreword by David and Gregory Chudnovsky. The book gives the reader a technical introduction to AXIOM, interacts with the system's tutorial, accesses algorithms newly developed by the symbolic computation community, and presents advanced programming and problem solving techniques. Eighty illustrations and eight pages of color inserts accompany text detailing methods used in the 2D and 3D interactive graphics system, and over 2500 example input lines help the reader solve formerly intractable problems.
Release

The Geometry of Numbers

Author: C. D. Olds,Anneli Lax,Giuliana Davidoff,Giuliana P. Davidoff

Publisher: Cambridge University Press

ISBN: 9780883856437

Category: Mathematics

Page: 174

View: 3795

A self-contained introduction to the geometry of numbers.
Release

Introductory Lectures on Knot Theory

Selected Lectures Presented at the Advanced School and Conference on Knot Theory and Its Applications to Physics and Biology, ICTP, Trieste, Italy, 11 - 29 May 2009

Author: Louis H. Kauffman

Publisher: World Scientific

ISBN: 9814313009

Category: Mathematics

Page: 519

View: 319

More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.
Release

Geometry of Continued Fractions

Author: Oleg Karpenkov

Publisher: Springer Science & Business Media

ISBN: 3642393683

Category: Mathematics

Page: 405

View: 2411

Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.
Release

Continued Fractions with Applications

Author: Lisa Lorentzen,Haakon Waadeland

Publisher: North Holland

ISBN: N.A

Category: Mathematics

Page: 606

View: 3140

This book is aimed at two kinds of readers: firstly, people working in or near mathematics, who are curious about continued fractions; and secondly, senior or graduate students who would like an extensive introduction to the analytic theory of continued fractions. The book contains several recent results and new angles of approach and thus should be of interest to researchers throughout the field. The first five chapters contain an introduction to the basic theory, while the last seven chapters present a variety of applications. Finally, an appendix presents a large number of special continued fraction expansions. This very readable book also contains many valuable examples and problems.
Release

The American Mathematical Monthly

The Official Journal of the Mathematical Association of America

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematicians

Page: N.A

View: 9357

Release

Continued Fractions

Author: A. M. Rockett,Peter Szsz

Publisher: World Scientific

ISBN: 9789810210526

Category: Mathematics

Page: 200

View: 5764

This book presents the arithmetic and metrical theory of regular continued fractions and is intended to be a modern version of A. Ya. Khintchine's classic of the same title. Besides new and simpler proofs for many of the standard topics, numerous numerical examples and applications are included (the continued fraction of e, Ostrowski representations and t-expansions, period lengths of quadratic surds, the general Pell's equation, homogeneous and inhomogeneous diophantine approximation, Hall's theorem, the Lagrange and Markov spectra, asymmetric approximation, etc). Suitable for upper level undergraduate and beginning graduate students, the presentation is self-contained and the metrical results are developed as strong laws of large numbers.
Release

Geometrie und Billard

Author: Serge Tabachnikov

Publisher: Springer-Verlag

ISBN: 3642319254

Category: Mathematics

Page: 165

View: 9166

Wie bewegt sich ein Massenpunkt in einem Gebiet, an dessen Rand er elastisch zurückprallt? Welchen Weg nimmt ein Lichtstrahl in einem Gebiet mit ideal reflektierenden Rändern? Anhand dieser und ähnlicher Fragen stellt das vorliegende Buch Zusammenhänge zwischen Billard und Differentialgeometrie, klassischer Mechanik sowie geometrischer Optik her. Dabei beschäftigt sich das Buch unter anderem mit dem Variationsprinzip beim mathematischen Billard, der symplektischen Geometrie von Lichtstrahlen, der Existenz oder Nichtexistenz von Kaustiken, periodischen Billardtrajektorien und dem Mechanismus für Chaos bei der Billarddynamik. Ergänzend wartet dieses Buch mit einer beachtlichen Anzahl von Exkursen auf, die sich verwandten Themen widmen, darunter der Vierfarbensatz, die mathematisch-physikalische Beschreibung von Regenbögen, der poincaresche Wiederkehrsatz, Hilberts viertes Problem oder der Schließungssatz von Poncelet.​
Release

Multidimensional Continued Fractions

Author: Fritz Schweiger

Publisher: Oxford University Press on Demand

ISBN: 9780198506867

Category: Mathematics

Page: 234

View: 8509

''... will serve as a reference book for anyone interested in this subject in the years to come.'' -Zentralblatt MathematikMultidimensional continued fractions form an area of research within number theory. Recently the topic has been linked to research in dynamical systems, and mathematical physics, which means that some of the results discovered in this area have applications in describing physical systems. This book gives a comprehensive and up to date overview of recent research in the area.
Release

Was ist Mathematik?

Author: Richard Courant,Herbert Robbins

Publisher: Springer-Verlag

ISBN: 3662000539

Category: Mathematics

Page: N.A

View: 4829

47 brauchen nur den Nenner n so groß zu wählen, daß das Intervall [0, IJn] kleiner wird als das fragliche Intervall [A, B], dann muß mindestens einer der Brüche m/n innerhalb des Intervalls liegen. Also kann es kein noch so kleines Intervall auf der Achse geben, das von rationalen Punkten frei wäre. Es folgt weiterhin, daß es in jedem Intervall unendlich viele rationale Punkte geben muß; denn wenn es nur eine endliche Anzahl gäbe, so könnte das Intervall zwischen zwei beliebigen benachbarten Punkten keine rationalen Punkte enthalten, was, wie wir eben sahen, unmöglich ist. § 2. Inkommensurable Strecken, irrationale Zahlen und der Grenzwertbegriff 1. Einleitung Vergleicht man zwei Strecken a und b hinsichtlich ihrer Größe, so kann es vor kommen, daß a in b genau r-mal enthalten ist, wobei r eine ganze Zahl darstellt. In diesem Fall können wir das Maß der Strecke b durch das von a ausdrücken, indem wir sagen, daß die Länge von b das r-fache der Länge von a ist.
Release

Famous Problems of Geometry and How to Solve Them

Author: Benjamin Bold

Publisher: Courier Corporation

ISBN: 0486137635

Category: Science

Page: 144

View: 6620

Delve into the development of modern mathematics and match wits with Euclid, Newton, Descartes, and others. Each chapter explores an individual type of challenge, with commentary and practice problems. Solutions.
Release