Continued Fractions

Author: N.A

Publisher: Springer Science & Business Media

ISBN: N.A

Category:

Page: N.A

View: 6339

Release

axịomTM

The Scientific Computation System

Author: Richard D. Jenks,Robert S. Sutor

Publisher: Springer

ISBN: 1461229405

Category: Mathematics

Page: 742

View: 8304

Recent advances in hardware performance and software technology have made possible a wholly different approach to computational mathematics. Symbolic computation systems have revolutionized the field, building upon established and recent mathematical theory to open new possibilities in virtually every industry. Formerly dubbed Scratchpad, AXIOM is a powerful new symbolic and numerical system developed at the IBM Thomas J. Watson Research Center. AXIOM's scope, structure, and organization make it outstanding among computer algebra systems. AXIOM: The Scientific Computation System is a companion to the AXIOM system. The text is written in a straightforward style and begins with a spirited foreword by David and Gregory Chudnovsky. The book gives the reader a technical introduction to AXIOM, interacts with the system's tutorial, accesses algorithms newly developed by the symbolic computation community, and presents advanced programming and problem solving techniques. Eighty illustrations and eight pages of color inserts accompany text detailing methods used in the 2D and 3D interactive graphics system, and over 2500 example input lines help the reader solve formerly intractable problems.
Release

The Geometry of Numbers

Author: C. D. Olds,Anneli Lax,Giuliana Davidoff,Giuliana P. Davidoff

Publisher: Cambridge University Press

ISBN: 9780883856437

Category: Mathematics

Page: 174

View: 5507

A self-contained introduction to the geometry of numbers.
Release

Introductory Lectures on Knot Theory

Selected Lectures Presented at the Advanced School and Conference on Knot Theory and Its Applications to Physics and Biology, ICTP, Trieste, Italy, 11 - 29 May 2009

Author: Louis H. Kauffman

Publisher: World Scientific

ISBN: 9814313009

Category: Mathematics

Page: 519

View: 5611

More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.
Release

The American Mathematical Monthly

The Official Journal of the Mathematical Association of America

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematicians

Page: N.A

View: 7968

Release

Continued Fractions with Applications

Author: Lisa Lorentzen,Haakon Waadeland

Publisher: North Holland

ISBN: N.A

Category: Mathematics

Page: 606

View: 3756

This book is aimed at two kinds of readers: firstly, people working in or near mathematics, who are curious about continued fractions; and secondly, senior or graduate students who would like an extensive introduction to the analytic theory of continued fractions. The book contains several recent results and new angles of approach and thus should be of interest to researchers throughout the field. The first five chapters contain an introduction to the basic theory, while the last seven chapters present a variety of applications. Finally, an appendix presents a large number of special continued fraction expansions. This very readable book also contains many valuable examples and problems.
Release

Geometry of Continued Fractions

Author: Oleg Karpenkov

Publisher: Springer Science & Business Media

ISBN: 3642393683

Category: Mathematics

Page: 405

View: 362

Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.
Release

Continued Fractions

Author: A. M. Rockett,Peter Szsz

Publisher: World Scientific

ISBN: 9789810210526

Category: Mathematics

Page: 200

View: 2281

This book presents the arithmetic and metrical theory of regular continued fractions and is intended to be a modern version of A. Ya. Khintchine's classic of the same title. Besides new and simpler proofs for many of the standard topics, numerous numerical examples and applications are included (the continued fraction of e, Ostrowski representations and t-expansions, period lengths of quadratic surds, the general Pell's equation, homogeneous and inhomogeneous diophantine approximation, Hall's theorem, the Lagrange and Markov spectra, asymmetric approximation, etc). Suitable for upper level undergraduate and beginning graduate students, the presentation is self-contained and the metrical results are developed as strong laws of large numbers.
Release

Multidimensional Continued Fractions

Author: Fritz Schweiger

Publisher: Oxford University Press on Demand

ISBN: 9780198506867

Category: Mathematics

Page: 234

View: 1060

''... will serve as a reference book for anyone interested in this subject in the years to come.'' -Zentralblatt MathematikMultidimensional continued fractions form an area of research within number theory. Recently the topic has been linked to research in dynamical systems, and mathematical physics, which means that some of the results discovered in this area have applications in describing physical systems. This book gives a comprehensive and up to date overview of recent research in the area.
Release

Fuzzy Systems and Soft Computing in Nuclear Engineering

Author: Da Ruan

Publisher: Springer Science & Business Media

ISBN: 9783790812510

Category: Business & Economics

Page: 479

View: 1286

This book is an organized edited collection of twenty-one contributed chapters covering nuclear engineering applications of fuzzy systems, neural networks, genetic algorithms and other soft computing techniques. All chapters are either updated review or original contributions by leading researchers written exclusively for this volume. The volume highlights the advantages of applying fuzzy systems and soft computing in nuclear engineering, which can be viewed as complementary to traditional methods. As a result, fuzzy sets and soft computing provide a powerful tool for solving intricate problems pertaining in nuclear engineering. Each chapter of the book is self-contained and also indicates the future research direction on this topic of applications of fuzzy systems and soft computing in nuclear engineering.
Release

Geometrie und Billard

Author: Serge Tabachnikov

Publisher: Springer-Verlag

ISBN: 3642319254

Category: Mathematics

Page: 165

View: 7322

Wie bewegt sich ein Massenpunkt in einem Gebiet, an dessen Rand er elastisch zurückprallt? Welchen Weg nimmt ein Lichtstrahl in einem Gebiet mit ideal reflektierenden Rändern? Anhand dieser und ähnlicher Fragen stellt das vorliegende Buch Zusammenhänge zwischen Billard und Differentialgeometrie, klassischer Mechanik sowie geometrischer Optik her. Dabei beschäftigt sich das Buch unter anderem mit dem Variationsprinzip beim mathematischen Billard, der symplektischen Geometrie von Lichtstrahlen, der Existenz oder Nichtexistenz von Kaustiken, periodischen Billardtrajektorien und dem Mechanismus für Chaos bei der Billarddynamik. Ergänzend wartet dieses Buch mit einer beachtlichen Anzahl von Exkursen auf, die sich verwandten Themen widmen, darunter der Vierfarbensatz, die mathematisch-physikalische Beschreibung von Regenbögen, der poincaresche Wiederkehrsatz, Hilberts viertes Problem oder der Schließungssatz von Poncelet.​
Release

Was ist Mathematik?

Author: Richard Courant,Herbert Robbins

Publisher: Springer-Verlag

ISBN: 3642137016

Category: Mathematics

Page: 400

View: 7293

"Was ist Mathematik?" lädt jeden ein, das Reich der Mathematik zu betreten, der neugierig genug ist, sich auf ein Abenteuer einzulassen. Das Buch richtet sich an Leser jeden Alters und jeder Vorbildung. Gymnasiallehrer erhalten eine Fülle von Beispielen, Studenten bietet es Orientierung, und Dozenten werden sich an den Feinheiten der Darstellung zweier Meister ihres Faches erfreuen.
Release

Die Lehre von den Kettenbrüchen

Band I: Elementare Kettenbrüche

Author: Oskar Perron

Publisher: Springer-Verlag

ISBN: 3663122891

Category: Mathematics

Page: 194

View: 3639

eigenen Begriffssystemen bereichert worden, die man nicht gerade als jedermann geläufig voraussetzen darf. Die Versuchung lag nahe, durch Heranziehung solcher Theorien den Kettenbrüchen einen gelehrteren Anstrich zu geben. Aber dadurch wäre nicht nur die Lektüre unnötig erschwert, sondern das Wesen der Dinge zumeist verschleiert worden, und es bestände die Gefahr, daß mancher Leser den künstlichen Anstrich für das Wesentliche halten und die harmlose Unschuld, die sich darunter verbirgt, vielleicht gar nicht mehr sehen würde. Deshalb habe ich auf logistische Hieroglyphen, geheimnisvolle "Räume" usw. verzichtet und bin bei der klassischen Wortsprache und den klassischen Rechenmethoden ge blieben. Lediglich zweireihige Matrizes wurden gelegentlich verwandt, nämlich da, wo sie einen wirklichen methodischen Vorteil bieten. Der Matrixkalkül ist ja heute in viel weiteren Kreisen bekannt als vor 40 Jahren und gehört fast schon zu den Elementen; ich habe ihn trotzdem nicht vorausgesetzt, sondern in § 5 das Wenige, was davon gebraucht wird, kurz zusammengestellt. In neuerer Zeit haben die Kettenbrüche auch in der augewandten Mathematik, z. B. in der Elektrotechnik und bei analytischen Approximationsmethoden, Verwendung ge funden. Auch den Vertretern dieser Disziplinen, sowie manchen interessierten Laien, die es trotz unseres materialistischen Zeitalters doch immer noch gibt, glaube ich durch leichte Verständlichkeit besser zu dienen als durch Paradieren mit einer übertriebenen Gelehrsamkeit. Auf die Beigabe einer möglichst lückenlosen Bibliographie habe ich ebenso wie früher verzichtet; man findet eine solche, die von den Anfängen bis ins erste Jahrzehnt unseres Jahrhunderts reicht, bei Wölffing 1.
Release