Author: Eberhard Freitag,Rolf Busam

Publisher: Springer-Verlag

ISBN: 3662073498

Category: Mathematics

Page: 533

View: 2605

Die komplexen Zahlen haben ihre historischen Wurzeln im 16. Jahrhundert, sie entstanden bei dem Versuch, algebmische Gleichungen zu lösen. So führte schon G. CARDANO (1545) formale Ausdrücke wie zum Beispiel 5 ± v'-15 ein, um Lösungen quadratischer und kubischer Gleichungen angeben zu können. R. BOMBELLI rechnete um 1560 bereits systematisch mit diesen Ausdrücken 3 und fand 4 als Lösung der Gleichung x = 15x + 4 in der verschlüsselten Form 4 = ~2 + v'-121 + ~2 - v'-121. Auch bei G. W. LEIBNIZ (1675) findet man Gleichungen dieser Art, wie z. B. VI + v'=3 + Vl- v'=3 = v'6. Im Jahre 1777 führte L. EULER die Bezeichnung i = A für die imaginäre Einheit ein. Der Fachausdruck "komplexe Zahl" stammt von C. F. GAUSS (1831). Die strenge Einführung der komplexen Zahlen als Paare reeller Zahlen geht auf W. R. HAMILTON (1837) zurück. Schon in der reellen Analysis ist es gelegentlich vorteilhaft, komplexe Zahlen einzuführen. Man denke beispielsweise an die Integration rationaler Funktio nen, die auf der Partialbruchentwicklung und damit auf dem Fundamentalsatz der Algebra beruht: Über dem Körper der komplexen Zahlen zerfällt jedes Polynom in ein Produkt von Linearfaktoren.



Author: H. S. KASANA

Publisher: PHI Learning Pvt. Ltd.

ISBN: 9788120326415

Category: Mathematics

Page: 504

View: 3723

The second edition of this comprehensive and accessible text continues to offer students a challenging and enjoyable study of complex variables that is infused with perfect balanced coverage of mathematical theory and applied topics. The author explains fundamental concepts and techniques with precision and introduces the students to complex variable theory through conceptual develop-ment of analysis that enables them to develop a thorough understanding of the topics discussed. Geometric interpretation of the results, wherever necessary, has been inducted for making the analysis more accessible. The level of the text assumes that the reader is acquainted with elementary real analysis. Beginning with the revision of the algebra of complex variables, the book moves on to deal with analytic functions, elementary functions, complex integration, sequences, series and infinite products, series expansions, singularities and residues. The application-oriented chapters on sums and integrals, conformal mappings, Laplace transform, and some special topics, provide a practical-use perspective. Enriched with many numerical examples and exercises designed to test the student's comprehension of the topics covered, this book is written for a one-semester course in complex variables for students in the science and engineering disciplines.

Complex Analysis

Author: Eberhard Freitag,Rolf Busam

Publisher: Springer Science & Business Media

ISBN: 3540939830

Category: Mathematics

Page: 532

View: 3248

All needed notions are developed within the book: with the exception of fundamentals which are presented in introductory lectures, no other knowledge is assumed Provides a more in-depth introduction to the subject than other existing books in this area Over 400 exercises including hints for solutions are included

A Course in Complex Analysis and Riemann Surfaces

Author: Wilhelm Schlag

Publisher: American Mathematical Society

ISBN: 0821898477

Category: Mathematics

Page: 384

View: 665

Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces. The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level. This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.

A Complex Analysis Problem Book

Author: Daniel Alpay

Publisher: Springer Science & Business Media

ISBN: 3034800789

Category: Mathematics

Page: 526

View: 4958

This is a collection of exercises in the theory of analytic functions, with completed and detailed solutions. We wish to introduce the student to applications and aspects of the theory of analytic functions not always touched upon in a first course. Using appropriate exercises we wish to show to the students some aspects of what lies beyond a first course in complex variables. We also discuss topics of interest for electrical engineering students (for instance, the realization of rational functions and its connections to the theory of linear systems and state space representations of such systems). Examples of important Hilbert spaces of analytic functions (in particular the Hardy space and the Fock space) are given. The book also includes a part where relevant facts from topology, functional analysis and Lebesgue integration are reviewed.

An Advanced Complex Analysis Problem Book

Topological Vector Spaces, Functional Analysis, and Hilbert Spaces of Analytic Functions

Author: Daniel Alpay

Publisher: Birkhäuser

ISBN: 3319160591

Category: Mathematics

Page: 521

View: 1273

This is an exercises book at the beginning graduate level, whose aim is to illustrate some of the connections between functional analysis and the theory of functions of one variable. A key role is played by the notions of positive definite kernel and of reproducing kernel Hilbert space. A number of facts from functional analysis and topological vector spaces are surveyed. Then, various Hilbert spaces of analytic functions are studied.

Basic Complex Analysis: A Comprehensive Course in Analysis, Part 2A

Author: Barry Simon

Publisher: American Mathematical Soc.

ISBN: 1470411008

Category: Mathematical analysis

Page: 641

View: 5094

A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 2A is devoted to basic complex analysis. It interweaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, respectively. Cauchy's view focuses on the differential and integral calculus of functions of a complex variable, with the key topics being the Cauchy integral formula and contour integration. For Riemann, the geometry of the complex plane is central, with key topics being fractional linear transformations and conformal mapping. For Weierstrass, the power series is king, with key topics being spaces of analytic functions, the product formulas of Weierstrass and Hadamard, and the Weierstrass theory of elliptic functions. Subjects in this volume that are often missing in other texts include the Cauchy integral theorem when the contour is the boundary of a Jordan region, continued fractions, two proofs of the big Picard theorem, the uniformization theorem, Ahlfors's function, the sheaf of analytic germs, and Jacobi, as well as Weierstrass, elliptic functions.

Einführung in die Komplexe Analysis

Elemente der Funktionentheorie

Author: Wolfgang Fischer,Ingo Lieb

Publisher: Springer-Verlag

ISBN: 9783834806635

Category: Mathematics

Page: 214

View: 3297

In den Bachelor-Studiengängen der Mathematik steht für die Komplexe Analysis (Funktionentheorie) oft nur eine einsemestrige 2-stündige Vorlesung zur Verfügung. Dieses Buch eignet sich als Grundlage für eine solche Vorlesung im 2. Studienjahr. Mit einer guten thematischen Auswahl, vielen Beispielen und ausführlichen Erläuterungen gibt dieses Buch eine Darstellung der Komplexen Analysis, die genau die Grundlagen und den wesentlichen Kernbestand dieses Gebietes enthält. Das Buch bietet über diese Grundausbildung hinaus weiteres Lehrmaterial als Ergänzung, sodass es auch für eine 3- oder 4 –stündige Vorlesung geeignet ist. Je nach Hörerkreis kann der Stoff unterschiedlich erweitert werden. So wurden für den „Bachelor Lehramt“ die geometrischen Aspekte der Komplexen Analysis besonders herausgearbeitet.

Analysis II

Author: Vladimir A. Zorich

Publisher: Springer

ISBN: 9783540462316

Category: Mathematics

Page: 708

View: 7614

Ausführlich, klar, exakt, solide: die Anfänge der Analysis in 2 Bänden. Von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie u.a. Differenzialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Deutlich auf naturwissenschaftliche Fragen ausgerichtet, erläutert dieses Werk detailliert Begriffe, Inhalte und Sätze der Integral- und Differenzialrechnung. Die Fülle hilfreicher Beispiele, Aufgaben und Anwendungen ist selten in Analysisbüchern zu finden. Band 2 beschreibt den heutigen Stand der klassischen Analysis.

Analysis 1

Author: V. A. Zorich

Publisher: Springer-Verlag

ISBN: 3540332782

Category: Mathematics

Page: 598

View: 5303

Ausführlicher Einblick in die Anfänge der Analysis: von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie Differentialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Ausgerichtet auf naturwissenschaftliche Fragestellungen und in detaillierter Herangehensweise an die Integral- und Differentialrechnung. Mit einer Fülle hilfreicher Beispiele, Aufgaben und Anwendungen. In Band 1: vollständige Übersicht zur Integral- und Differentialrechnung einer Variablen, erweitert um die Differentialrechnung mehrerer Variablen.

Lineare Funktionalanalysis

Eine anwendungsorientierte Einführung

Author: Hans Wilhelm Alt

Publisher: Springer-Verlag

ISBN: 3642222617

Category: Mathematics

Page: 449

View: 3555

Die lineare Funktionalanalysis ist ein Teilgebiet der Mathematik, das Algebra mit Topologie und Analysis verbindet. Das Buch führt in das Fachgebiet ein, dabei bezieht es sich auf Anwendungen in Mathematik und Physik. Neben den vollständigen Beweisen aller mathematischen Sätze enthält der Band zahlreiche Aufgaben, meist mit Lösungen. Für die Neuauflage wurden die Inhalte komplett überarbeitet. Das Standardwerk auf dem Gebiet der Funktionalanalysis richtet sich insbesondere an Leser mit Interesse an Anwendungen auf Differentialgleichungen.

Vorlesungen Über die Zahlentheorie der Quaternionen

Author: Adolf Hurwitz

Publisher: Springer-Verlag

ISBN: 3642475361

Category: Mathematics

Page: 76

View: 1258

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

From Calculus to Analysis

Author: Steen Pedersen

Publisher: Springer

ISBN: 3319136410

Category: Mathematics

Page: 342

View: 2309

This textbook features applications including a proof of the Fundamental Theorem of Algebra, space filling curves, and the theory of irrational numbers. In addition to the standard results of advanced calculus, the book contains several interesting applications of these results. The text is intended to form a bridge between calculus and analysis. It is based on the authors lecture notes used and revised nearly every year over the last decade. The book contains numerous illustrations and cross references throughout, as well as exercises with solutions at the end of each section.

Distributionen Und Hilbertraumoperatoren

Mathematische Methoden Der Physik

Author: Philippe Blanchard,Erwin Brüning

Publisher: Springer

ISBN: 9783211825075

Category: Science

Page: 375

View: 4561

Das Buch bietet eine Einführung in die zum Studium der Theoretischen Physik notwendigen mathematischen Grundlagen. Der erste Teil des Buches beschäftigt sich mit der Theorie der Distributionen und vermittelt daneben einige Grundbegriffe der linearen Funktionalanalysis. Der zweite Teil baut darauf auf und gibt eine auf das Wesentliche beschränkte Einführung in die Theorie der linearen Operatoren in Hilbert-Räumen. Beide Teile werden von je einer Übersicht begleitet, die die zentralen Ideen und Begriffe knapp erläutert und den Inhalt kurz beschreibt. In den Anhängen werden einige grundlegende Konstruktionen und Konzepte der Funktionalanalysis dargestellt und wichtige Konsequenzen entwickelt.

A Course on Rough Paths

With an Introduction to Regularity Structures

Author: Peter K. Friz,Martin Hairer

Publisher: N.A

ISBN: 9783319083339


Page: 268

View: 584


Kategorien und Funktoren

Author: Bodo Pareigis

Publisher: N.A


Category: Categories (Mathematics)

Page: 192

View: 2277