An Introduction to Dynamical Systems

Author: Kathleen Alligood,Tim Sauer,J.A. Yorke

Publisher: Springer

ISBN: 3642592813

Category: Mathematics

Page: 603

View: 3681

BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Author: Morris W. Hirsch,Stephen Smale,Robert L. Devaney

Publisher: Academic Press

ISBN: 0123497035

Category: Mathematics

Page: 417

View: 5356

This text is about the dynamical aspects of ordinary differential equations and the relations between dynamical systems and certain fields outside pure mathematics. It is an update of one of Academic Press's most successful mathematics texts ever published, which has become the standard textbook for graduate courses in this area. The authors are tops in the field of advanced mathematics. Steve Smale is a Field's Medalist, which equates to being a Nobel prize winner in mathematics. Bob Devaney has authored several leading books in this subject area. Linear algebra prerequisites toned down from first edition Inclusion of analysis of examples of chaotic systems, including Lorenz, Rosssler, and Shilnikov systems Bifurcation theory included throughout.

An Introduction To Chaotic Dynamical Systems

Author: Robert Devaney

Publisher: CRC Press

ISBN: 0429981937

Category: Science

Page: 360

View: 1693

The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

An Introduction to Dynamical Systems

Author: D. K. Arrowsmith,C. M. Place

Publisher: Cambridge University Press

ISBN: 9780521316507

Category: Mathematics

Page: 423

View: 7722

In recent years there has been an explosion of research centred on the appearance of so-called 'chaotic behaviour'. This book provides a largely self contained introduction to the mathematical structures underlying models of systems whose state changes with time, and which therefore may exhibit this sort of behaviour. The early part of this book is based on lectures given at the University of London and covers the background to dynamical systems, the fundamental properties of such systems, the local bifurcation theory of flows and diffeomorphisms, Anosov automorphism, the horseshoe diffeomorphism and the logistic map and area preserving planar maps . The authors then go on to consider current research in this field such as the perturbation of area-preserving maps of the plane and the cylinder. This book, which has a great number of worked examples and exercises, many with hints, and over 200 figures, will be a valuable first textbook to both senior undergraduates and postgraduate students in mathematics, physics, engineering, and other areas in which the notions of qualitative dynamics are employed.

Die Erforschung des Chaos

Eine Einführung für Naturwissenschaftler und Ingenieure

Author: John H. Argyris,Gunter Faust,Maria Haase

Publisher: Springer-Verlag

ISBN: 3322904415

Category: Mathematics

Page: 790

View: 5809

Das Buch stellt die grundlegenden Konzepte der Chaos-Theorie und die mathematischen Hilfsmittel so elementar wie möglich dar.

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Author: Stephen Wiggins

Publisher: Springer Science & Business Media

ISBN: 1475740670

Category: Mathematics

Page: 672

View: 9411

This volume is an introduction to applied nonlinear dynamics and chaos. The emphasis is on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains an extensive bibliography and a detailed glossary of terms.

Nonlinear Dynamics and Quantum Chaos

An Introduction

Author: Sandro Wimberger

Publisher: Springer

ISBN: 331906343X

Category: Science

Page: 206

View: 5490

The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.

Mathematics of Complexity and Dynamical Systems

Author: Robert A. Meyers

Publisher: Springer Science & Business Media

ISBN: 1461418054

Category: Mathematics

Page: 1858

View: 4397

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.

Dynamical Systems on 2- and 3-Manifolds

Author: Viacheslav Z. Grines,Timur V. Medvedev,Olga V. Pochinka

Publisher: Springer

ISBN: 3319448471

Category: Mathematics

Page: 295

View: 7698

This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed.“br> The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are presented in Part 1 for convenience. The book is accessible to ambitious undergraduates, graduates, and researchers in dynamical systems and low dimensional topology. This volume consists of 10 chapters; each chapter contains its own set of references and a section on further reading. Proofs are presented with the exact statements of the results. In Chapter 10 the authors briefly state the necessary definitions and results from algebra, geometry and topology. When stating ancillary results at the beginning of each part, the authors refer to other sources which are readily available.

Introduction to Mathematical Systems Theory

A Behavioral Approach

Author: J.C. Willems,J.W. Polderman

Publisher: Springer Science & Business Media

ISBN: 1475729537

Category: Mathematics

Page: 424

View: 9547

Using the behavioural approach to mathematical modelling, this book views a system as a dynamical relation between manifest and latent variables. The emphasis is on dynamical systems that are represented by systems of linear constant coefficients. The first part analyses the structure of the set of trajectories generated by such dynamical systems, and derives the conditions for two systems of differential equations to be equivalent in the sense that they define the same behaviour. In addition the memory structure of the system is analysed through state space models. The second part of the book is devoted to a number of important system properties, notably controllability, observability, and stability. In the third part, control problems are considered, in particular stabilisation and pole placement questions. Suitable for advanced undergraduate or beginning graduate students in mathematics and engineering, this text contains numerous exercises, including simulation problems, and examples, notably of mechanical systems and electrical circuits.

Chaos and Nonlinear Dynamics

An Introduction for Scientists and Engineers

Author: Robert C. Hilborn,Amanda and Lisa Cross Professor of Physics Robert Hilborn

Publisher: Oxford University Press on Demand

ISBN: 9780198507239

Category: Mathematics

Page: 650

View: 7132

This is a comprehensive introduction to the exciting scientific field of nonlinear dynamics for students, scientists, and engineers, and requires only minimal prerequisites in physics and mathematics. The book treats all the important areas in the field and provides an extensive and up-to-date bibliography of applications in all fields of science, social science, economics, and even the arts.

Chaotic and Fractal Dynamics

Introduction for Applied Scientists and Engineers

Author: Francis C. Moon

Publisher: John Wiley & Sons

ISBN: 3527617515

Category: Science

Page: 528

View: 7879

A revision of a professional text on the phenomena of chaotic vibrations in fluids and solids. Major changes reflect the latest developments in this fast-moving topic, the introduction of problems to every chapter, additional mathematics and applications, more coverage of fractals, numerous computer and physical experiments. Contains eight pages of 4-color pictures.

A First Course In Chaotic Dynamical Systems

Theory And Experiment

Author: Robert L. Devaney

Publisher: Hachette UK

ISBN: 0813345472

Category: Science

Page: 320

View: 5214

A First Course in Chaotic Dynamical Systems: Theory and Experiment is the first book to introduce modern topics in dynamical systems at the undergraduate level. Accessible to readers with only a background in calculus, the book integrates both theory and computer experiments into its coverage of contemporary ideas in dynamics. It is designed as a gradual introduction to the basic mathematical ideas behind such topics as chaos, fractals, Newton's method, symbolic dynamics, the Julia set, and the Mandelbrot set, and includes biographies of some of the leading researchers in the field of dynamical systems. Mathematical and computer experiments are integrated throughout the text to help illustrate the meaning of the theorems presented.Chaotic Dynamical Systems Software, Labs 1–6 is a supplementary laboratory software package, available separately, that allows a more intuitive understanding of the mathematics behind dynamical systems theory. Combined with A First Course in Chaotic Dynamical Systems, it leads to a rich understanding of this emerging field.

Geometrie und Billard

Author: Serge Tabachnikov

Publisher: Springer-Verlag

ISBN: 3642319254

Category: Mathematics

Page: 165

View: 1987

Wie bewegt sich ein Massenpunkt in einem Gebiet, an dessen Rand er elastisch zurückprallt? Welchen Weg nimmt ein Lichtstrahl in einem Gebiet mit ideal reflektierenden Rändern? Anhand dieser und ähnlicher Fragen stellt das vorliegende Buch Zusammenhänge zwischen Billard und Differentialgeometrie, klassischer Mechanik sowie geometrischer Optik her. Dabei beschäftigt sich das Buch unter anderem mit dem Variationsprinzip beim mathematischen Billard, der symplektischen Geometrie von Lichtstrahlen, der Existenz oder Nichtexistenz von Kaustiken, periodischen Billardtrajektorien und dem Mechanismus für Chaos bei der Billarddynamik. Ergänzend wartet dieses Buch mit einer beachtlichen Anzahl von Exkursen auf, die sich verwandten Themen widmen, darunter der Vierfarbensatz, die mathematisch-physikalische Beschreibung von Regenbögen, der poincaresche Wiederkehrsatz, Hilberts viertes Problem oder der Schließungssatz von Poncelet.​

Introduction to Mathematical Modeling and Chaotic Dynamics

Author: Ranjit Kumar Upadhyay,Satteluri R. K. Iyengar

Publisher: CRC Press

ISBN: 1439898863

Category: Mathematics

Page: 363

View: 4596

Introduction to Mathematical Modeling and Chaotic Dynamics focuses on mathematical models in natural systems, particularly ecological systems. Most of the models presented are solved using MATLAB®. The book first covers the necessary mathematical preliminaries, including testing of stability. It then describes the modeling of systems from natural science, focusing on one- and two-dimensional continuous and discrete time models. Moving on to chaotic dynamics, the authors discuss ways to study chaos, types of chaos, and methods for detecting chaos. They also explore chaotic dynamics in single and multiple species systems. The text concludes with a brief discussion on models of mechanical systems and electronic circuits. Suitable for advanced undergraduate and graduate students, this book provides a practical understanding of how the models are used in current natural science and engineering applications. Along with a variety of exercises and solved examples, the text presents all the fundamental concepts and mathematical skills needed to build models and perform analyses.

Dynamical And Complex Systems

Author: Bullett Shaun,Fearn Tom,Smith Frank

Publisher: World Scientific

ISBN: 1786341050

Category: Mathematics

Page: 228

View: 1652

This book leads readers from a basic foundation to an advanced level understanding of dynamical and complex systems. It is the perfect text for graduate or PhD mathematical-science students looking for support in topics such as applied dynamical systems, Lotka–Volterra dynamical systems, applied dynamical systems theory, dynamical systems in cosmology, aperiodic order, and complex systems dynamics. Dynamical and Complex Systems is the fifth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Editor the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.

Chaos and Fractals

An Elementary Introduction

Author: David P. Feldman

Publisher: Oxford University Press

ISBN: 0199566445

Category: Mathematics

Page: 408

View: 8575

For students with a background in elementary algebra, this book provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia Sets and the Mandelbrot Set, power laws, and cellular automata. The book includes over 200 end-of-chapter exercises.

Chaos: A Mathematical Introduction

Author: John Banks,Valentina Dragan,Arthur Jones

Publisher: Cambridge University Press

ISBN: 9780521531047

Category: Mathematics

Page: 294

View: 2161

Presents an introduction to chaos theory.

Nonlinear Ordinary Differential Equations

An Introduction to Dynamical Systems

Author: Dominic William Jordan,Peter Smith

Publisher: Oxford University Press, USA

ISBN: 9780198565628

Category: Mathematics

Page: 550

View: 6900

The text of this edition has been revised to bring it into line with current teaching, including an expansion of the material on bifurcations and chaos. It is directed towards practical applications of the theory with examples and problems.