Building the Data Warehouse

Author: W. H. Inmon

Publisher: John Wiley & Sons

ISBN: 0471774235

Category: Computers

Page: 543

View: 9895

The new edition of the classic bestseller that launched the data warehousing industry covers new approaches and technologies, many of which have been pioneered by Inmon himself In addition to explaining the fundamentals of data warehouse systems, the book covers new topics such as methods for handling unstructured data in a data warehouse and storing data across multiple storage media Discusses the pros and cons of relational versus multidimensional design and how to measure return on investment in planning data warehouse projects Covers advanced topics, including data monitoring and testing Although the book includes an extra 100 pages worth of valuable content, the price has actually been reduced from $65 to $55
Release

Building the Data Warehouse

Author: W. H. Inmon

Publisher: John Wiley & Sons

ISBN: 0471270482

Category: Computers

Page: 432

View: 6003

The data warehousing bible updated for the new millennium Updated and expanded to reflect the many technological advances occurring since the previous edition, this latest edition of the data warehousing "bible" provides a comprehensive introduction to building data marts, operational data stores, the Corporate Information Factory, exploration warehouses, and Web-enabled warehouses. Written by the father of the data warehouse concept, the book also reviews the unique requirements for supporting e-business and explores various ways in which the traditional data warehouse can be integrated with new technologies to provide enhanced customer service, sales, and support-both online and offline-including near-line data storage techniques.
Release

Building the Data Warehouse

Author: W. H. Inmon

Publisher: Wiley

ISBN: 9780764599446

Category: Computers

Page: 576

View: 7536

The new edition of the classic bestseller that launched the data warehousing industry covers new approaches and technologies, many of which have been pioneered by Inmon himself In addition to explaining the fundamentals of data warehouse systems, the book covers new topics such as methods for handling unstructured data in a data warehouse and storing data across multiple storage media Discusses the pros and cons of relational versus multidimensional design and how to measure return on investment in planning data warehouse projects Covers advanced topics, including data monitoring and testing Although the book includes an extra 100 pages worth of valuable content, the price has actually been reduced from $65 to $55
Release

Building a Data Warehouse

With Examples in SQL Server

Author: Vincent Rainardi

Publisher: Apress

ISBN: 1430205288

Category: Computers

Page: 523

View: 1883

Here is the ideal field guide for data warehousing implementation. This book first teaches you how to build a data warehouse, including defining the architecture, understanding the methodology, gathering the requirements, designing the data models, and creating the databases. Coverage then explains how to populate the data warehouse and explores how to present data to users using reports and multidimensional databases and how to use the data in the data warehouse for business intelligence, customer relationship management, and other purposes. It also details testing and how to administer data warehouse operation.
Release

Data Warehouse Building Using Standard Query Language Server

Author: Venkateswara Rao

Publisher: Lulu Press, Inc

ISBN: 1329404718

Category: Education

Page: N.A

View: 8623

The book is organized as follows. In the beginning of this book (chapters 1 through 6), you learn how to build a data warehouse, for example, defining the architecture, understanding the methodology, gathering the requirements, designing the data models, and creating the databases. Then in chapters 7 through 10, you learn how to populate the data warehouse, for example, extracting from source systems, loading the data stores, maintaining data quality, and utilizing the metadata. After you populate the data warehouse, in chapters 11 through 15, you explore how to present data to users using reports and multidimensional databases and how to use the data in the data warehouse for business intelligence, customer relationship management, and other purposes. Chapters 16 and 17 wrap up the book: After you have built your data warehouse, before it can be released to production, you need to test it thoroughly. After your application is in production, you need to understand how to administer data warehouse operation.
Release

Building the Unstructured Data Warehouse

Architecture, Analysis, and Design

Author: Bill Inmon,Krish Krishnan

Publisher: Technics Publications

ISBN: 1634620348

Category: Computers

Page: 216

View: 7081

Learn essential techniques from data warehouse legend Bill Inmon on how to build the reporting environment your business needs now! Answers for many valuable business questions hide in text. How well can your existing reporting environment extract the necessary text from email, spreadsheets, and documents, and put it in a useful format for analytics and reporting? Transforming the traditional data warehouse into an efficient unstructured data warehouse requires additional skills from the analyst, architect, designer, and developer. This book will prepare you to successfully implement an unstructured data warehouse and, through clear explanations, examples, and case studies, you will learn new techniques and tips to successfully obtain and analyze text. Master these ten objectives: • Build an unstructured data warehouse using the 11-step approach • Integrate text and describe it in terms of homogeneity, relevance, medium, volume, and structure • Overcome challenges including blather, the Tower of Babel, and lack of natural relationships • Avoid the Data Junkyard and combat the “Spider’s Web” • Reuse techniques perfected in the traditional data warehouse and Data Warehouse 2.0,including iterative development • Apply essential techniques for textual Extract, Transform, and Load (ETL) such as phrase recognition, stop word filtering, and synonym replacement • Design the Document Inventory system and link unstructured text to structured data • Leverage indexes for efficient text analysis and taxonomies for useful external categorization • Manage large volumes of data using advanced techniques such as backward pointers • Evaluate technology choices suitable for unstructured data processing, such as data warehouse appliances The following outline briefly describes each chapter’s content: • Chapter 1 defines unstructured data and explains why text is the main focus of this book. The sources for text, including documents, email, and spreadsheets, are described in terms of factors such as homogeneity, relevance, and structure. • Chapter 2 addresses the challenges one faces when managing unstructured data. These challenges include volume, blather, the Tower of Babel, spelling, and lack of natural relationships. Learn how to avoid a data junkyard, which occurs when unstructured data is not properly integrated into the data warehouse. This chapter emphasizes the importance of storing integrated unstructured data in a relational structure. We are cautioned on both the commonality and dangers associated with text based on paper. • Chapter 3 begins with a timeline of applications, highlighting their evolution over the decades. Eventually, powerful yet siloed applications created a “spider’s web” environment. This chapter describes how data warehouses solved many problems, including the creation of corporate data, the ability to get out of the maintenance backlog conundrum, and greater data integrity and data accessibility. There were problems, however, with the data warehouse that were addressed in Data Warehouse 2.0 (DW 2.0), such as the inevitable data lifecycle. This chapter discusses the DW 2.0 architecture, which leads into the role of the unstructured data warehouse. The unstructured data warehouse is defined and benefits are given. There are several features of the conventional data warehouse that can be leveraged for the unstructured data warehouse, including ETL processing, textual integration, and iterative development. • Chapter 4 focuses on the heart of the unstructured data warehouse: Textual Extract, Transform, and Load (ETL). This chapter has separate sections on extracting text, transforming text, and loading text. The chapter emphasizes the issues around source data. There are a wide variety of sources, and each of the sources has its own set of considerations. Extracting pointers are provided, such as reading documents only once and recognizing common and different file types. Transforming text requires addressing many considerations discussed in this chapter, including phrase recognition, stop word filtering, and synonym replacement. Loading text is the final step. There are important points to understand here, too, that are explained in this chapter, such as the importance of the thematic approach and knowing how to handle large volumes of data. Two ETL examples are provided, one on email and one on spreadsheets. • Chapter 5 describes the 11 steps required to develop the unstructured data warehouse. The methodology explained in this chapter is a combination of both traditional system development lifecycle and spiral approaches. • Chapter 6 describes how to inventory documents for maximum analysis value, as well as link the unstructured text to structured data for even greater value. The Document Inventory is discussed, which is similar to a library card catalog used for organizing corporate documents. This chapter explores ways of linking unstructured text to structured data. The emphasis is on taking unstructured data and reducing it into a form of data that is structured. Related concepts to linking, such as probabilistic linkages and dynamic linkages, are discussed. • Chapter 7 goes through each of the different types of indexes necessary to make text analysis efficient. Indexes range from simple indexes, which are fast to create and are good if the analyst really knows what needs to be analyzed before the indexing process begins, to complex combined indexes, which can be made up of any and all of the other kinds of indexes. • Chapter 8 explains taxonomies and how they can be used within the unstructured data warehouse. Both simple and complicated taxonomies are discussed. Techniques to help the reader leverage taxonomies, including using preferred taxonomies, external categorization, and cluster analysis are described. Real world problems are raised, including the possibilities of encountering hierarchies, multiple types, and recursion. The chapter ends with a discussion comparing a taxonomy with a data model. • Chapter 9 explains ways of coping with large amounts of unstructured data. Techniques such as keeping the unstructured data at its source and using backward pointers are discussed. The chapter explains why iterative development is so important. Ways of reducing the amount of data are presented, including screening and removing extraneous data, as well as parallelizing the workload. • Chapter 10 focuses on challenges and some technology choices that are suitable for unstructured data processing. The traditional data warehouse processing technology is reviewed. In addition, the data warehouse appliance is discussed. • Chapters 11, 12, and 13 put all of the previously discussed techniques and approaches in context through three case studies: the Ablatz Medical Group, the Eastern Hills Oil Company, and the Amber Oil Company.
Release

Building and Maintaining a Data Warehouse

Author: Fon Silvers

Publisher: CRC Press

ISBN: 9781420064636

Category: Computers

Page: 328

View: 8244

As it is with building a house, most of the work necessary to build a data warehouse is neither visible nor obvious when looking at the completed product. While it may be easy to plan for a data warehouse that incorporates all the right concepts, taking the steps needed to create a warehouse that is as functional and user-friendly as it is theoretically sound, is not especially easy. That’s the challenge that Building and Maintaininga Data Warehouse answers. Based on a foundation of industry-accepted principles, this work provides an easy-to-follow approach that is cohesive and holistic. By offering the perspective of a successful data warehouse, as well as that of a failed one, this workdetails those factors that must be accomplished and those that are best avoided. Organized to logically progress from more general to specific information, this valuable guide: Presents areas of a data warehouse individually and in sequence, showing how each piece becomes a working part of the whole Examines the concepts and principles that are at the foundation of every successful data warehouse Explains how to recognize and attend to problematic gaps in an established data warehouse Provides the big picture perspective that planners and executives require Those considering the planning and creation of a data warehouse, as well as those who’ve already built one will profit greatly from the insights garnered by the author during his years of creating and gathering information on state-of-the-art data warehouses that are accessible, convenient, and reliable.
Release

Data Warehousing in the Age of Big Data

Author: Krish Krishnan

Publisher: Newnes

ISBN: 0124059201

Category: Computers

Page: 370

View: 9619

Data Warehousing in the Age of the Big Data will help you and your organization make the most of unstructured data with your existing data warehouse. As Big Data continues to revolutionize how we use data, it doesn't have to create more confusion. Expert author Krish Krishnan helps you make sense of how Big Data fits into the world of data warehousing in clear and concise detail. The book is presented in three distinct parts. Part 1 discusses Big Data, its technologies and use cases from early adopters. Part 2 addresses data warehousing, its shortcomings, and new architecture options, workloads, and integration techniques for Big Data and the data warehouse. Part 3 deals with data governance, data visualization, information life-cycle management, data scientists, and implementing a Big Data–ready data warehouse. Extensive appendixes include case studies from vendor implementations and a special segment on how we can build a healthcare information factory. Ultimately, this book will help you navigate through the complex layers of Big Data and data warehousing while providing you information on how to effectively think about using all these technologies and the architectures to design the next-generation data warehouse. Learn how to leverage Big Data by effectively integrating it into your data warehouse. Includes real-world examples and use cases that clearly demonstrate Hadoop, NoSQL, HBASE, Hive, and other Big Data technologies Understand how to optimize and tune your current data warehouse infrastructure and integrate newer infrastructure matching data processing workloads and requirements
Release

Building a Scalable Data Warehouse with Data Vault 2.0

Author: Dan Linstedt,Michael Olschimke

Publisher: Morgan Kaufmann

ISBN: 0128026480

Category: Computers

Page: 684

View: 6367

The Data Vault was invented by Dan Linstedt at the U.S. Department of Defense, and the standard has been successfully applied to data warehousing projects at organizations of different sizes, from small to large-size corporations. Due to its simplified design, which is adapted from nature, the Data Vault 2.0 standard helps prevent typical data warehousing failures. "Building a Scalable Data Warehouse" covers everything one needs to know to create a scalable data warehouse end to end, including a presentation of the Data Vault modeling technique, which provides the foundations to create a technical data warehouse layer. The book discusses how to build the data warehouse incrementally using the agile Data Vault 2.0 methodology. In addition, readers will learn how to create the input layer (the stage layer) and the presentation layer (data mart) of the Data Vault 2.0 architecture including implementation best practices. Drawing upon years of practical experience and using numerous examples and an easy to understand framework, Dan Linstedt and Michael Olschimke discuss: How to load each layer using SQL Server Integration Services (SSIS), including automation of the Data Vault loading processes. Important data warehouse technologies and practices. Data Quality Services (DQS) and Master Data Services (MDS) in the context of the Data Vault architecture. Provides a complete introduction to data warehousing, applications, and the business context so readers can get-up and running fast Explains theoretical concepts and provides hands-on instruction on how to build and implement a data warehouse Demystifies data vault modeling with beginning, intermediate, and advanced techniques Discusses the advantages of the data vault approach over other techniques, also including the latest updates to Data Vault 2.0 and multiple improvements to Data Vault 1.0
Release

The Data Webhouse Toolkit

Building the Web-Enabled Data Warehouse

Author: Ralph Kimball,Richard Merz

Publisher: Wiley

ISBN: 9780471376804

Category: Computers

Page: 417

View: 433

"Ralph's latest book ushers in the second wave of the Internet. . . . Bottom line, this book provides the insight to help companies combine Internet-based business intelligence with the bounty of customer data generated from the internet."--William Schmarzo, Director World Wide Solutions, Sales, and Marketing,IBM NUMA-Q. Receiving over 100 million hits a day, the most popular commercial Websites have an excellent opportunity to collect valuable customer data that can help create better service and improve sales. Companies can use this information to determine buying habits, provide customers with recommendations on new products, and much more. Unfortunately, many companies fail to take full advantage of this deluge of information because they lack the necessary resources to effectively analyze it. In this groundbreaking guide, data warehousing's bestselling author, Ralph Kimball, introduces readers to the Data Webhouse--the marriage of the data warehouse and the Web. If designed and deployed correctly, the Webhouse can become the linchpin of the modern, customer-focused company, providing competitive information essential to managers and strategic decision makers. In this book, Dr. Kimball explains the key elements of the Webhouse and provides detailed guidelines for designing, building, and managing the Webhouse. The results are a business better positioned to stay healthy and competitive. In this book, you'll learn methods for: - Tracking Website user actions - Determining whether a customer is about to switch to a competitor - Determining whether a particular Web ad is working - Capturing data points about customer behavior - Designing the Website to support Webhousing - Building clickstream datamarts - Designing the Webhouse user interface - Managing and scaling the Webhouse The companion Website at www.wiley.com/compbooks/kimball provides updates on Webhouse technologies and techniques, as well as links to related sites and resources.
Release

Building, Using, and Managing the Data Warehouse

Author: Ramón C. Barquín,Herb Edelstein

Publisher: Prentice Hall

ISBN: 9780135343555

Category: Computers

Page: 317

View: 4372

When it comes to making organizations smarter, faster, and more competitive, few technologies have more promise than data warehousing. This book shows you how to translate that promise into reality.
Release

The Data Warehouse Toolkit

The Definitive Guide to Dimensional Modeling

Author: Ralph Kimball,Margy Ross

Publisher: John Wiley & Sons

ISBN: 1118732286

Category: Computers

Page: 600

View: 7491

Updated new edition of Ralph Kimball's groundbreaking book on dimensional modeling for data warehousing and business intelligence! The first edition of Ralph Kimball's The Data Warehouse Toolkit introduced the industry to dimensional modeling, and now his books are considered the most authoritative guides in this space. This new third edition is a complete library of updated dimensional modeling techniques, the most comprehensive collection ever. It covers new and enhanced star schema dimensional modeling patterns, adds two new chapters on ETL techniques, includes new and expanded business matrices for 12 case studies, and more. Authored by Ralph Kimball and Margy Ross, known worldwide as educators, consultants, and influential thought leaders in data warehousing and business intelligence Begins with fundamental design recommendations and progresses through increasingly complex scenarios Presents unique modeling techniques for business applications such as inventory management, procurement, invoicing, accounting, customer relationship management, big data analytics, and more Draws real-world case studies from a variety of industries, including retail sales, financial services, telecommunications, education, health care, insurance, e-commerce, and more Design dimensional databases that are easy to understand and provide fast query response with The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition.
Release

Corporate Information Factory

Author: W. H. Inmon,Claudia Imhoff,Ryan Sousa

Publisher: John Wiley & Sons

ISBN: 0471437506

Category: Computers

Page: 400

View: 5172

The "father of data warehousing" incorporates the latest technologies into his blueprint for integrated decision support systems Today's corporate IT and data warehouse managers are required to make a small army of technologies work together to ensure fast and accurate information for business managers. Bill Inmon created the Corporate Information Factory to solve the needs of these managers. Since the First Edition, the design of the factory has grown and changed dramatically. This Second Edition, revised and expanded by 40% with five new chapters, incorporates these changes. This step-by-step guide will enable readers to connect their legacy systems with the data warehouse and deal with a host of new and changing technologies, including Web access mechanisms, e-commerce systems, ERP (Enterprise Resource Planning) systems. The book also looks closely at exploration and data mining servers for analyzing customer behavior and departmental data marts for finance, sales, and marketing.
Release

Building a Data Warehouse for Decision Support

Author: Vidette Poe,Patricia Klauer,Stephen Brobst

Publisher: Prentice Hall

ISBN: N.A

Category: Computers

Page: 285

View: 6903

Completely revised, expanded, and updated, this second edition gives extensive new coverage of data integration, management, indexing, cleansing, and transformation. The book covers powerful new multi-dimensional front-ends and conversion tools and gives detailed coverage of lifecycle issues.
Release

Data Warehousing Fundamentals

A Comprehensive Guide for IT Professionals

Author: Paulraj Ponniah

Publisher: John Wiley & Sons

ISBN: 0471463892

Category: Computers

Page: 544

View: 910

Geared to IT professionals eager to get into the all-important field of data warehousing, this book explores all topics needed by those who design and implement data warehouses. Readers will learn about planning requirements, architecture, infrastructure, data preparation, information delivery, implementation, and maintenance. They'll also find a wealth of industry examples garnered from the author's 25 years of experience in designing and implementing databases and data warehouse applications for major corporations. Market: IT Professionals, Consultants.
Release

Object-oriented Data Warehouse Design

Building a Star Schema

Author: William A. Giovinazzo

Publisher: Prentice Hall

ISBN: 9780130850812

Category: Computers

Page: 349

View: 9985

Leading data warehouse expert Giovinazzo details a proven software engineering methodology and world-class techniques for data modeling in any decision-support environment. Each step of the process is introduced with theory and supported with a case-study example. Includes methodology checklists, chapter review questions, glossaries, bibliographies and more.
Release

Data Warehousing

Building the Corporate Knowledge Base

Author: Tom Hammergren

Publisher: Coriolis Group

ISBN: N.A

Category: Data warehousing

Page: 470

View: 4196

This book covers the fundamentals of successfully designing, modeling and delivering a data warehouse and details techniques and links readers to a comprehensive methodology that enables system professionals to build and deliver a data warehouse that meets both corporate and management needs. The book features a skeleton project plan to assist readers in setting up their own project.
Release

DW 2.0: The Architecture for the Next Generation of Data Warehousing

Author: W.H. Inmon,Derek Strauss,Genia Neushloss

Publisher: Elsevier

ISBN: 9780080558332

Category: Computers

Page: 400

View: 5545

DW 2.0: The Architecture for the Next Generation of Data Warehousing is the first book on the new generation of data warehouse architecture, DW 2.0, by the father of the data warehouse. The book describes the future of data warehousing that is technologically possible today, at both an architectural level and technology level. The perspective of the book is from the top down: looking at the overall architecture and then delving into the issues underlying the components. This allows people who are building or using a data warehouse to see what lies ahead and determine what new technology to buy, how to plan extensions to the data warehouse, what can be salvaged from the current system, and how to justify the expense at the most practical level. This book gives experienced data warehouse professionals everything they need in order to implement the new generation DW 2.0. It is designed for professionals in the IT organization, including data architects, DBAs, systems design and development professionals, as well as data warehouse and knowledge management professionals. * First book on the new generation of data warehouse architecture, DW 2.0. * Written by the "father of the data warehouse", Bill Inmon, a columnist and newsletter editor of The Bill Inmon Channel on the Business Intelligence Network. * Long overdue comprehensive coverage of the implementation of technology and tools that enable the new generation of the DW: metadata, temporal data, ETL, unstructured data, and data quality control.
Release

Mastering Data Warehouse Design

Relational and Dimensional Techniques

Author: Claudia Imhoff,Nicholas Galemmo,Jonathan G. Geiger

Publisher: John Wiley & Sons

ISBN: 0471480924

Category: Computers

Page: 456

View: 7183

A cutting-edge response to Ralph Kimball's challenge to the data warehouse community that answers some tough questions about the effectiveness of the relational approach to data warehousing Written by one of the best-known exponents of the Bill Inmon approach to data warehousing Addresses head-on the tough issues raised by Kimball and explains how to choose the best modeling technique for solving common data warehouse design problems Weighs the pros and cons of relational vs. dimensional modeling techniques Focuses on tough modeling problems, including creating and maintaining keys and modeling calendars, hierarchies, transactions, and data quality
Release

Designing a Data Warehouse

Supporting Customer Relationship Management

Author: Chris Todman

Publisher: Prentice Hall

ISBN: 9780130897121

Category: Computers

Page: 323

View: 5652

The complete guide to building tomorrow's CRM-focused data warehouses. A complete methodology for building CRM-focused data warehouses Planning, ROI, conceptual and logical models, physical implementation, project management, and beyond For database developers, architects, consultants, project managers, and decision-makers Today's next-generation data warehouses are being built with a clear goal: to maximize the power of Customer Relationship Management. To make CRM-focused data warehousing work, you need new techniques, and new methodologies. In this book, Dr. Chris Todman—one of the world's leading data warehouse consultants—delivers the first start-to-finish methodology for defining, designing, and implementing CRM-focused data warehouses. Todman covers all this, and more: Critical design challenges unique to CRM-focused data warehousing A new look at data warehouse conceptual models, logical models, and physical implementation The crucial implications of time in data warehouse modeling and querying Project management: deliverables, assumptions, risks, and team-building—including a full breakdown of work Estimating the ROI of CRM-focused data warehouses up front Choosing software for loading, extraction, transformation, querying, data mining, campaign management, personalization, and metadata DW futures: temporal databases, OLAP SQL extensions, active decision support, integrating external and unstructured data, search agents, and more If you want to leverage the full power of your CRM system, you need a data warehouse designed for the purpose. One book shows you exactly how to build one:Designing Data Warehousesby Dr. Chris Todman.
Release