Biostatistics

A Methodology For the Health Sciences

Author: Gerald van Belle,Lloyd D. Fisher,Patrick J. Heagerty,Thomas Lumley

Publisher: John Wiley & Sons

ISBN: 0471602353

Category: Medical

Page: 896

View: 1927

A respected introduction to biostatistics, thoroughly updated and revised The first edition of Biostatistics: A Methodology for the Health Sciences has served professionals and students alike as a leading resource for learning how to apply statistical methods to the biomedical sciences. This substantially revised Second Edition brings the book into the twenty-first century for today’s aspiring and practicing medical scientist. This versatile reference provides a wide-ranging look at basic and advanced biostatistical concepts and methods in a format calibrated to individual interests and levels of proficiency. Written with an eye toward the use of computer applications, the book examines the design of medical studies, descriptive statistics, and introductory ideas of probability theory and statistical inference; explores more advanced statistical methods; and illustrates important current uses of biostatistics. New to this edition are discussions of Longitudinal data analysis Randomized clinical trials Bayesian statistics GEE The bootstrap method Enhanced by a companion Web site providing data sets, selected problems and solutions, and examples from such current topics as HIV/AIDS, this is a thoroughly current, comprehensive introduction to the field.
Release

Biostatistics

Basic Concepts and Methodology for the Health Sciences

Author: Wayne W. Daniel,Chad Lee Cross

Publisher: N.A

ISBN: 9781118362204

Category: Biometry

Page: 777

View: 608

Allied health professionals rely on "Biostatistics" for its high standards of statistical accuracy. It helps them develop a set of statistical tools that are relevant to their field. Now in its ninth edition, the book integrates new applications from several biological science fields throughout the pages. Each chapter now opens with bulleted objectives that highlight the main ideas. Summary boxes of formulae and statistical rules are presented for easy reference and review. Support is also provided for multiple programs such as SPSS, SAS, and STATA, in addition to Minitab. This includes screen captures and technology boxes with step-by-step help. Health professionals will then gain the ability to use technology to analyze data.
Release

Biostatistics, a foundation for analysis in the health sciences

Author: Wayne W. Daniel

Publisher: John Wiley & Sons

ISBN: N.A

Category: Mathematics

Page: 734

View: 630

This classic text takes an applied and computer-oriented approach to its topical coverage. The book is intended for one or two semester courses in biostatistics at the undergraduate or graduate level offered by departments of biostatistics, statistics, mathematics, nursing and other allied health disciplines, and is also used in some departments of forestry and animal husbandry. Nearly all the examples and exercises make use of real data from actual research projects and reports from health sciences literature. Where appropriate, Minitab, SPSS and SAS commands and printouts are included as part of the examples and solutions to exercises.
Release

Statistical Methods in Diagnostic Medicine

Author: Xiao-Hua Zhou,Nancy A. Obuchowski,Donna K. McClish

Publisher: John Wiley & Sons

ISBN: 1118626044

Category: Medical

Page: 592

View: 2835

Praise for the First Edition " . . . the book is a valuable addition to the literature in the field, serving as a much-needed guide for both clinicians and advanced students."—Zentralblatt MATH A new edition of the cutting-edge guide to diagnostic tests in medical research In recent years, a considerable amount of research has focused on evolving methods for designing and analyzing diagnostic accuracy studies. Statistical Methods in Diagnostic Medicine, Second Edition continues to provide a comprehensive approach to the topic, guiding readers through the necessary practices for understanding these studies and generalizing the results to patient populations. Following a basic introduction to measuring test accuracy and study design, the authors successfully define various measures of diagnostic accuracy, describe strategies for designing diagnostic accuracy studies, and present key statistical methods for estimating and comparing test accuracy. Topics new to the Second Edition include: Methods for tests designed to detect and locate lesions Recommendations for covariate-adjustment Methods for estimating and comparing predictive values and sample size calculations Correcting techniques for verification and imperfect standard biases Sample size calculation for multiple reader studies when pilot data are available Updated meta-analysis methods, now incorporating random effects Three case studies thoroughly showcase some of the questions and statistical issues that arise in diagnostic medicine, with all associated data provided in detailed appendices. A related web site features Fortran, SAS®, and R software packages so that readers can conduct their own analyses. Statistical Methods in Diagnostic Medicine, Second Edition is an excellent supplement for biostatistics courses at the graduate level. It also serves as a valuable reference for clinicians and researchers working in the fields of medicine, epidemiology, and biostatistics.
Release

Introductory Biostatistics for the Health Sciences

Modern Applications Including Bootstrap

Author: Michael R. Chernick,Robert H. Friis

Publisher: John Wiley & Sons

ISBN: 0471458651

Category: Mathematics

Page: 424

View: 961

Accessible to medicine- and/or public policy-related audiences, as well as most statisticians. Emphasis on outliers is discussed by way of detection and treatment. Resampling statistics software is incorporated throughout. Motivating applications are presented in light of honest theory. Plentiful exercises are sprinkled throughout.
Release

Clinical Trials

A Methodologic Perspective

Author: Steven Piantadosi

Publisher: John Wiley & Sons

ISBN: 1118959213

Category: Mathematics

Page: 896

View: 5426

Presents elements of clinical trial methods that are essential in planning, designing, conducting, analyzing, and interpreting clinical trials with the goal of improving the evidence derived from these important studies This Third Edition builds on the text’s reputation as a straightforward, detailed, and authoritative presentation of quantitative methods for clinical trials. Readers will encounter the principles of design for various types of clinical trials, and are then skillfully guided through the complete process of planning the experiment, assembling a study cohort, assessing data, and reporting results. Throughout the process, the author alerts readers to problems that may arise during the course of the trial and provides common sense solutions. All stages of therapeutic development are discussed in detail, and the methods are not restricted to a single clinical application area. The authors bases current revisions and updates on his own experience, classroom instruction, and feedback from teachers and medical and statistical professionals involved in clinical trials. The Third Edition greatly expands its coverage, ranging from statistical principles to new and provocative topics, including alternative medicine and ethics, middle development, comparative studies, and adaptive designs. At the same time, it offers more pragmatic advice for issues such as selecting outcomes, sample size, analysis, reporting, and handling allegations of misconduct. Readers familiar with the First and Second Editions will discover revamped exercise sets; an updated and extensive reference section; new material on endpoints and the developmental pipeline, among others; and revisions of numerous sections. In addition, this book: • Features accessible and broad coverage of statistical design methods—the crucial building blocks of clinical trials and medical research -- now complete with new chapters on overall development, middle development, comparative studies, and adaptive designs • Teaches readers to design clinical trials that produce valid qualitative results backed by rigorous statistical methods • Contains an introduction and summary in each chapter to reinforce key points • Includes discussion questions to stimulate critical thinking and help readers understand how they can apply their newfound knowledge • Provides extensive references to direct readers to the most recent literature, and there are numerous new or revised exercises throughout the book Clinical Trials: A Methodologic Perspective, Third Edition is a textbook accessible to advanced undergraduate students in the quantitative sciences, graduate students in public health and the life sciences, physicians training in clinical research methods, and biostatisticians and epidemiologists. Steven Piantadosi, MD, PhD, is the Phase One Foundation Distinguished Chair and Director of the Samuel Oschin Cancer Institute, and Professor of Medicine at Cedars-Sinai Medical Center in Los Angeles, California. Dr. Piantadosi is one of the world’s leading experts in the design and analysis of clinical trials for cancer research. He has taught clinical trials methods extensively in formal courses and short venues. He has advised numerous academic programs and collaborations nationally regarding clinical trial design and conduct, and has served on external advisory boards for the National Institutes of Health and other prominent cancer programs and centers. The author of more than 260 peer-reviewed scientific articles, Dr. Piantadosi has published extensively on research results, clinical applications, and trial methodology. While his papers have contributed to many areas of oncology, he has also collaborated on diverse studies outside oncology including lung disease and degenerative neurological disease.
Release

Biostatistical Methods

The Assessment of Relative Risks

Author: John M. Lachin

Publisher: John Wiley & Sons

ISBN: 1118625846

Category: Mathematics

Page: 672

View: 5657

Praise for the First Edition ". . . an excellent textbook . . . an indispensable reference for biostatisticians and epidemiologists." —International Statistical Institute A new edition of the definitive guide to classical and modern methods of biostatistics Biostatistics consists of various quantitative techniques that are essential to the description and evaluation of relationships among biologic and medical phenomena. Biostatistical Methods: The Assessment of Relative Risks, Second Edition develops basic concepts and derives an expanded array of biostatistical methods through the application of both classical statistical tools and more modern likelihood-based theories. With its fluid and balanced presentation, the book guides readers through the important statistical methods for the assessment of absolute and relative risks in epidemiologic studies and clinical trials with categorical, count, and event-time data. Presenting a broad scope of coverage and the latest research on the topic, the author begins with categorical data analysis methods for cross-sectional, prospective, and retrospective studies of binary, polychotomous, and ordinal data. Subsequent chapters present modern model-based approaches that include unconditional and conditional logistic regression; Poisson and negative binomial models for count data; and the analysis of event-time data including the Cox proportional hazards model and its generalizations. The book now includes an introduction to mixed models with fixed and random effects as well as expanded methods for evaluation of sample size and power. Additional new topics featured in this Second Edition include: Establishing equivalence and non-inferiority Methods for the analysis of polychotomous and ordinal data, including matched data and the Kappa agreement index Multinomial logistic for polychotomous data and proportional odds models for ordinal data Negative binomial models for count data as an alternative to the Poisson model GEE models for the analysis of longitudinal repeated measures and multivariate observations Throughout the book, SAS is utilized to illustrate applications to numerous real-world examples and case studies. A related website features all the data used in examples and problem sets along with the author's SAS routines. Biostatistical Methods, Second Edition is an excellent book for biostatistics courses at the graduate level. It is also an invaluable reference for biostatisticians, applied statisticians, and epidemiologists.
Release

Basic Statistics

A Primer for Biomedical Sciences

Author: Olive Jean Dunn,Virginia A. Clark

Publisher: Wiley-Interscience

ISBN: N.A

Category: Mathematics

Page: 184

View: 2717

An introduction to the use of statistics in biomedical research-now fully updated for the information age Since the second edition of Basic Statistics was published more than two decades ago, there have been significant changes in the way statistics is applied in the biomedical fields. To provide relevant, up-to-date coverage of biostatistics for professionals in public health, medicine, and other biomedical fields, this popular primer is now thoroughly revised. The new edition emphasizes biomedical research methodology and clearly explains the design, graphical methods, and exploratory data analysis as used in contemporary studies. Through short, concise, nontechnical presentations (high-school algebra is the only requirement!), readers will learn to interpret and examine data from biomedical studies and apply such tools as sampling, random assignment, and biostatistical analyses in their own research. Basic Statistics, Third Edition: * Describes major types of biomedical studies and how to design them * Discusses the samples used in different types of biomedical studies * Emphasizes the use of confidence intervals in data analysis * Offers a new introduction to survival analysis, including clinical life tables * Substantiates with examples some of the major statistical theorems * Adds new graphs, figures, problem sets, and bibliographic references * Discusses using statistical computer programs in data analysis
Release

Statistical Advances in the Biomedical Sciences

Clinical Trials, Epidemiology, Survival Analysis, and Bioinformatics

Author: Atanu Biswas,Sujay Datta,Jason P. Fine,Mark R. Segal

Publisher: John Wiley & Sons

ISBN: 9780470181195

Category: Mathematics

Page: 640

View: 8336

The Most Comprehensive and Cutting-Edge Guide to Statistical Applications in Biomedical Research With the increasing use of biotechnology in medical research and the sophisticated advances in computing, it has become essential for practitioners in the biomedical sciences to be fully educated on the role statistics plays in ensuring the accurate analysis of research findings. Statistical Advances in the Biomedical Sciences explores the growing value of statistical knowledge in the management and comprehension of medical research and, more specifically, provides an accessible introduction to the contemporary methodologies used to understand complex problems in the four major areas of modern-day biomedical science: clinical trials, epidemiology, survival analysis, and bioinformatics. Composed of contributions from eminent researchers in the field, this volume discusses the application of statistical techniques to various aspects of modern medical research and illustrates how these methods ultimately prove to be an indispensable part of proper data collection and analysis. A structural uniformity is maintained across all chapters, each beginning with an introduction that discusses general concepts and the biomedical problem under focus and is followed by specific details on the associated methods, algorithms, and applications. In addition, each chapter provides a summary of the main ideas and offers a concluding remarks section that presents novel ideas, approaches, and challenges for future research. Complete with detailed references and insight on the future directions of biomedical research, Statistical Advances in the Biomedical Sciences provides vital statistical guidance to practitioners in the biomedical sciences while also introducing statisticians to new, multidisciplinary frontiers of application. This text is an excellent reference for graduate- and PhD-level courses in various areas of biostatistics and the medical sciences and also serves as a valuable tool for medical researchers, statisticians, public health professionals, and biostatisticians.
Release

Categorical Data Analysis

Author: Alan Agresti

Publisher: John Wiley & Sons

ISBN: 1118710940

Category: Mathematics

Page: 744

View: 6217

Praise for the Second Edition "A must-have book for anyone expecting to do research and/or applications in categorical data analysis." —Statistics in Medicine "It is a total delight reading this book." —Pharmaceutical Research "If you do any analysis of categorical data, this is an essential desktop reference." —Technometrics The use of statistical methods for analyzing categorical data has increased dramatically, particularly in the biomedical, social sciences, and financial industries. Responding to new developments, this book offers a comprehensive treatment of the most important methods for categorical data analysis. Categorical Data Analysis, Third Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial loglinear models for discrete data with normal regression for continuous data. This edition also features: An emphasis on logistic and probit regression methods for binary, ordinal, and nominal responses for independent observations and for clustered data with marginal models and random effects models Two new chapters on alternative methods for binary response data, including smoothing and regularization methods, classification methods such as linear discriminant analysis and classification trees, and cluster analysis New sections introducing the Bayesian approach for methods in that chapter More than 100 analyses of data sets and over 600 exercises Notes at the end of each chapter that provide references to recent research and topics not covered in the text, linked to a bibliography of more than 1,200 sources A supplementary website showing how to use R and SAS; for all examples in the text, with information also about SPSS and Stata and with exercise solutions Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and methodologists, such as biostatisticians and researchers in the social and behavioral sciences, medicine and public health, marketing, education, finance, biological and agricultural sciences, and industrial quality control.
Release

Statistical Methods for Survival Data Analysis

Author: Elisa T. Lee,John Wenyu Wang

Publisher: John Wiley & Sons

ISBN: 1118593057

Category: Mathematics

Page: 512

View: 9898

Praise for the Third Edition “. . . an easy-to read introduction to survival analysis which covers the major concepts and techniques of the subject.” —Statistics in Medical Research Updated and expanded to reflect the latest developments, Statistical Methods for Survival Data Analysis, Fourth Edition continues to deliver a comprehensive introduction to the most commonly-used methods for analyzing survival data. Authored by a uniquely well-qualified author team, the Fourth Edition is a critically acclaimed guide to statistical methods with applications in clinical trials, epidemiology, areas of business, and the social sciences. The book features many real-world examples to illustrate applications within these various fields, although special consideration is given to the study of survival data in biomedical sciences. Emphasizing the latest research and providing the most up-to-date information regarding software applications in the field, Statistical Methods for Survival Data Analysis, Fourth Edition also includes: Marginal and random effect models for analyzing correlated censored or uncensored data Multiple types of two-sample and K-sample comparison analysis Updated treatment of parametric methods for regression model fitting with a new focus on accelerated failure time models Expanded coverage of the Cox proportional hazards model Exercises at the end of each chapter to deepen knowledge of the presented material Statistical Methods for Survival Data Analysis is an ideal text for upper-undergraduate and graduate-level courses on survival data analysis. The book is also an excellent resource for biomedical investigators, statisticians, and epidemiologists, as well as researchers in every field in which the analysis of survival data plays a role.
Release

Bootstrap Methods

A Guide for Practitioners and Researchers

Author: Michael R. Chernick

Publisher: John Wiley & Sons

ISBN: 1118211596

Category: Mathematics

Page: 400

View: 8039

A practical and accessible introduction to the bootstrap method——newly revised and updated Over the past decade, the application of bootstrap methods to new areas of study has expanded, resulting in theoretical and applied advances across various fields. Bootstrap Methods, Second Edition is a highly approachable guide to the multidisciplinary, real-world uses of bootstrapping and is ideal for readers who have a professional interest in its methods, but are without an advanced background in mathematics. Updated to reflect current techniques and the most up-to-date work on the topic, the Second Edition features: The addition of a second, extended bibliography devoted solely to publications from 1999–2007, which is a valuable collection of references on the latest research in the field A discussion of the new areas of applicability for bootstrap methods, including use in the pharmaceutical industry for estimating individual and population bioequivalence in clinical trials A revised chapter on when and why bootstrap fails and remedies for overcoming these drawbacks Added coverage on regression, censored data applications, P-value adjustment, ratio estimators, and missing data New examples and illustrations as well as extensive historical notes at the end of each chapter With a strong focus on application, detailed explanations of methodology, and complete coverage of modern developments in the field, Bootstrap Methods, Second Edition is an indispensable reference for applied statisticians, engineers, scientists, clinicians, and other practitioners who regularly use statistical methods in research. It is also suitable as a supplementary text for courses in statistics and resampling methods at the upper-undergraduate and graduate levels.
Release

Engineering Biostatistics

An Introduction Using MATLAB and WinBUGS

Author: Brani Vidakovic

Publisher: John Wiley & Sons

ISBN: 1119168961

Category: Mathematics

Page: 984

View: 6463

Provides a one-stop resource for engineers learning biostatistics using MATLAB® and WinBUGS Through its scope and depth of coverage, this book addresses the needs of the vibrant and rapidly growing bio-oriented engineering fields while implementing software packages that are familiar to engineers. The book is heavily oriented to computation and hands-on approaches so readers understand each step of the programming. Another dimension of this book is in parallel coverage of both Bayesian and frequentist approaches to statistical inference. It avoids taking sides on the classical vs. Bayesian paradigms, and many examples in this book are solved using both methods. The results are then compared and commented upon. Readers have the choice of MATLAB® for classical data analysis and WinBUGS/OpenBUGS for Bayesian data analysis. Every chapter starts with a box highlighting what is covered in that chapter and ends with exercises, a list of software scripts, datasets, and references. Engineering Biostatistics: An Introduction using MATLAB® and WinBUGS also includes: parallel coverage of classical and Bayesian approaches, where appropriate substantial coverage of Bayesian approaches to statistical inference material that has been classroom-tested in an introductory statistics course in bioengineering over several years exercises at the end of each chapter and an accompanying website with full solutions and hints to some exercises, as well as additional materials and examples Engineering Biostatistics: An Introduction using MATLAB® and WinBUGS can serve as a textbook for introductory-to-intermediate applied statistics courses, as well as a useful reference for engineers interested in biostatistical approaches.
Release

Applied Biostatistics for the Health Sciences

Author: Richard J. Rossi

Publisher: John Wiley & Sons

ISBN: 0470147644

Category: Mathematics

Page: 648

View: 7920

Biostatistics is quickly becoming one of the most important areas of statistics due to the tremendous increase in health care needs. This book successfully introduces the terminology, concepts, and correct uses and interpretation of biostatistics. It is ideal for practitioners as well as students going into health care fields. Pedagogical features include formulas highlighted in text boxes and chapter summaries that highlight key vocabulary and concepts for the chapter. An accompanying Web site provides both MINITAB® and Microsoft® Office Excel® data files data for the case studies and exercises that are contained in the text.
Release

Measuring Agreement

Models, Methods, and Applications

Author: Pankaj K. Choudhary,Haikady N. Nagaraja

Publisher: John Wiley & Sons

ISBN: 1118553241

Category: Medical

Page: 352

View: 1316

Release

Statistical methods for rates and proportions

Author: Joseph L. Fleiss

Publisher: John Wiley & Sons

ISBN: N.A

Category: Mathematics

Page: 223

View: 5322

Includes a new chapter on logistic regression. Discusses the design and analysis of random trials. Explores the latest applications of sample size tables. Contains a new section on binomial distribution.
Release

Biostatistical Methods in Epidemiology

Author: Stephen C. Newman

Publisher: John Wiley & Sons

ISBN: 0471461601

Category: Medical

Page: 408

View: 3526

An introduction to classical biostatistical methods in epidemiology Biostatistical Methods in Epidemiology provides an introduction to a wide range of methods used to analyze epidemiologic data, with a focus on nonregression techniques. The text includes an extensive discussion of measurement issues in epidemiology, especially confounding. Maximum likelihood, Mantel-Haenszel, and weighted least squares methods are presented for the analysis of closed cohort and case-control data. Kaplan-Meier and Poisson methods are described for the analysis of censored survival data. A justification for using odds ratio methods in case-control studies is provided. Standardization of rates is discussed and the construction of ordinary, multiple decrement and cause-deleted life tables is outlined. Sample size formulas are given for a range of epidemiologic study designs. The text ends with a brief overview of logistic and Cox regression. Other highlights include: Many worked examples based on actual data Discussion of exact methods Recommendations for preferred methods Extensive appendices and references Biostatistical Methods in Epidemiology provides an excellent introduction to the subject for students, while also serving as a comprehensive reference for epidemiologists and other health professionals. For more information, visit www.wiley.com/mathematics
Release

Discrete Distributions

Applications in the Health Sciences

Author: Daniel Zelterman

Publisher: John Wiley & Sons

ISBN: 0470868899

Category: Mathematics

Page: 306

View: 2205

There have been many advances in the theory and applications of discrete distributions in recent years. They can be applied to a wide range of problems, particularly in the health sciences, although a good understanding of their properties is very important. Discrete Distributions: Applications in the Health Sciences describes a number of new discrete distributions that arise in the statistical examination of real examples. For each example, an understanding of the issues surrounding the data provides the motivation for the subsequent development of the statistical models. Provides an overview of discrete distributions and their applications in the health sciences. Focuses on real examples, giving readers an insight into the utility of the models. Describes the properties of each distribution, and the methods that led to their development. Presents a range of examples from the health sciences, including cancer, epidemiology, and demography. Features discussion of software implementation – in SAS, Fortran and R – enabling readers to apply the methods to their own problems. Written in an accessible style, suitable for applied statisticians and numerate health scientists. Software and data sets are made available on the Web. Discrete Distributions: Applications in the Health Sciences provides a practical introduction to these powerful statistical tools and their applications, suitable for researchers and graduate students from statistics and biostatistics. The focus on applications, and the accessible style of the book, make it an excellent practical reference source for practitioners from the health sciences.
Release