Asymptotic Methods for Integrals

Author: Nico M Temme

Publisher: World Scientific

ISBN: 9814612170

Category: Mathematics

Page: 628

View: 1609

This book gives introductory chapters on the classical basic and standard methods for asymptotic analysis, such as Watson's lemma, Laplace's method, the saddle point and steepest descent methods, stationary phase and Darboux's method. The methods, explained in great detail, will obtain asymptotic approximations of the well-known special functions of mathematical physics and probability theory. After these introductory chapters, the methods of uniform asymptotic analysis are described in which several parameters have influence on typical phenomena: turning points and transition points, coinciding saddle and singularities. In all these examples, the special functions are indicated that describe the peculiar behavior of the integrals. The text extensively covers the classical methods with an emphasis on how to obtain expansions, and how to use the results for numerical methods, in particular for approximating special functions. In this way, we work with a computational mind: how can we use certain expansions in numerical analysis and in computer programs, how can we compute coefficients, and so on. Contents:Basic Methods for IntegralsBasic Methods: Examples for Special FunctionsOther Methods for IntegralsUniform Methods for IntegralsUniform Methods for Laplace-Type IntegralsUniform Examples for Special FunctionsA Class of Cumulative Distribution Functions Readership: Researchers in applied mathematics, engineering, physics, mathematical statistics, probability theory and biology. The introductory parts and examples will be useful for post-graduate students in mathematics. Key Features:The book gives a complete overview of the classical asymptotic methods for integralsThe many examples give insight in the behavior of the well-known special functionsThe detailed explanations on how to obtain the coefficients in the expansions make the results useful for numerical applications, in particular, for computing special functionsThe many results on asymptotic representations of special functions supplement and extend those in the NIST Handbook of Mathematical FunctionsKeywords:Asymptotic Analysis;Approximation of Integrals;Asymptotic Approximations;Asymptotic Expansions;Steepest Descent Methods;Saddle Point Methods;Stationary Phase Method;Special Functions;Numerical Approximation of Special Functions;Cumulative Distribution FunctionsReviews: “The book is a useful contribution to the literature. It contains many asymptotic formulas that can be used by practitioners.” Zentralblatt MATH
Release

Asymptotic Methods in Analysis

Author: N. G. de Bruijn

Publisher: Courier Corporation

ISBN: 0486150798

Category: Mathematics

Page: 224

View: 1935

This pioneering study/textbook in a crucial area of pure and applied mathematics features worked examples instead of the formulation of general theorems. Extensive coverage of saddle-point method, iteration, and more. 1958 edition.
Release

Asymptotic Expansions of Integrals

Author: Norman Bleistein,Richard A. Handelsman

Publisher: Courier Corporation

ISBN: 0486650820

Category: Mathematics

Page: 425

View: 9584

Excellent introductory text, written by two experts, presents a coherent and systematic view of principles and methods. Topics include integration by parts, Watson's lemma, LaPlace's method, stationary phase, and steepest descents. Additional subjects include the Mellin transform method and less elementary aspects of the method of steepest descents. 1975 edition.
Release

Analysis I

Integral Representations and Asymptotic Methods

Author: R.V. Gamkrelidze

Publisher: Springer Science & Business Media

ISBN: 3642613101

Category: Mathematics

Page: 238

View: 466

Infinite series, and their analogues-integral representations, became funda mental tools in mathematical analysis, starting in the second half of the seven teenth century. They have provided the means for introducing into analysis all o( the so-called transcendental functions, including those which are now called elementary (the logarithm, exponential and trigonometric functions). With their help the solutions of many differential equations, both ordinary and partial, have been found. In fact the whole development of mathematical analysis from Newton up to the end of the nineteenth century was in the closest way connected with the development of the apparatus of series and integral representations. Moreover, many abstract divisions of mathematics (for example, functional analysis) arose and were developed in order to study series. In the development of the theory of series two basic directions can be singled out. One is the justification of operations with infmite series, the other is the creation oftechniques for using series in the solution of mathematical and applied problems. Both directions have developed in parallel Initially progress in the first direction was significantly smaller, but, in the end, progress in the second direction has always turned out to be of greater difficulty.
Release

Asymptotic Analysis

Author: J.D. Murray

Publisher: Springer Science & Business Media

ISBN: 1461211220

Category: Mathematics

Page: 165

View: 7906

From the reviews: "A good introduction to a subject important for its capacity to circumvent theoretical and practical obstacles, and therefore particularly prized in the applications of mathematics. The book presents a balanced view of the methods and their usefulness: integrals on the real line and in the complex plane which arise in different contexts, and solutions of differential equations not expressible as integrals. Murray includes both historical remarks and references to sources or other more complete treatments. More useful as a guide for self-study than as a reference work, it is accessible to any upperclass mathematics undergraduate. Some exercises and a short bibliography included. Even with E.T. Copson's Asymptotic Expansions or N.G. de Bruijn's Asymptotic Methods in Analysis (1958), any academic library would do well to have this excellent introduction." (S. Puckette, University of the South) #Choice Sept. 1984#1
Release

Expansions and Asymptotics for Statistics

Author: Christopher G. Small

Publisher: CRC Press

ISBN: 9781420011029

Category: Mathematics

Page: 357

View: 9062

Asymptotic methods provide important tools for approximating and analysing functions that arise in probability and statistics. Moreover, the conclusions of asymptotic analysis often supplement the conclusions obtained by numerical methods. Providing a broad toolkit of analytical methods, Expansions and Asymptotics for Statistics shows how asymptotics, when coupled with numerical methods, becomes a powerful way to acquire a deeper understanding of the techniques used in probability and statistics. The book first discusses the role of expansions and asymptotics in statistics, the basic properties of power series and asymptotic series, and the study of rational approximations to functions. With a focus on asymptotic normality and asymptotic efficiency of standard estimators, it covers various applications, such as the use of the delta method for bias reduction, variance stabilisation, and the construction of normalising transformations, as well as the standard theory derived from the work of R.A. Fisher, H. Cramér, L. Le Cam, and others. The book then examines the close connection between saddle-point approximation and the Laplace method. The final chapter explores series convergence and the acceleration of that convergence.
Release

Asymptotic Analysis

A Distributional Approach

Author: Ricardo Estrada,Ram P. Kanwal

Publisher: Springer Science & Business Media

ISBN: 1468400290

Category: Mathematics

Page: 258

View: 9276

Asymptotic analysis is an old subject that has found applications in vari ous fields of pure and applied mathematics, physics and engineering. For instance, asymptotic techniques are used to approximate very complicated integral expressions that result from transform analysis. Similarly, the so lutions of differential equations can often be computed with great accuracy by taking the sum of a few terms of the divergent series obtained by the asymptotic calculus. In view of the importance of these methods, many excellent books on this subject are available [19], [21], [27], [67], [90], [91], [102], [113]. An important feature of the theory of asymptotic expansions is that experience and intuition play an important part in it because particular problems are rather individual in nature. Our aim is to present a sys tematic and simplified approach to this theory by the use of distributions (generalized functions). The theory of distributions is another important area of applied mathematics, that has also found many applications in mathematics, physics and engineering. It is only recently, however, that the close ties between asymptotic analysis and the theory of distributions have been studied in detail [15], [43], [44], [84], [92], [112]. As it turns out, generalized functions provide a very appropriate framework for asymptotic analysis, where many analytical operations can be performed, and also pro vide a systematic procedure to assign values to the divergent integrals that often appear in the literature.
Release

Analysis

Author: Revaz V. Gamkrelidze

Publisher: N.A

ISBN: 9783540170082

Category: Mathematics

Page: 238

View: 1624

The major achievements of mathematical analysis from Newton and Euler to modern applications of mathematics in physical sciences, engineering and other areas are presented in this volume. Its three parts cover the methods of analysis: representation methods, asymptotic methods and transform methods. The authors - the well-known analysts M.A. Evgrafov and M.V. Fedoryuk - have not simply presented a compendium of techniques but have stressed throughout the underlying unity of the various methods. The fundamental ideas are clearly presented and illustrated with interesting and non-trivial examples. References, together with guides to the literature, are provided for those readers who wish to go further.
Release

Advanced Mathematical Methods for Scientists and Engineers I

Asymptotic Methods and Perturbation Theory

Author: Carl M. Bender,Steven A. Orszag

Publisher: Springer Science & Business Media

ISBN: 1475730691

Category: Mathematics

Page: 593

View: 3771

A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.
Release

Asymptotic Expansions

Author: A. Erdélyi

Publisher: Courier Corporation

ISBN: 0486603180

Category: Mathematics

Page: 108

View: 402

Originally prepared for the Office of Naval Research, this important monograph introduces various methods for the asymptotic evaluation of integrals containing a large parameter, and solutions of ordinary linear differential equations by means of asymptotic expansions. Author's preface. Bibliography.
Release

Mathematical Methods for Engineers and Scientists 3

Fourier Analysis, Partial Differential Equations and Variational Methods

Author: Kwong-Tin Tang

Publisher: Springer Science & Business Media

ISBN: 3540446958

Category: Science

Page: 440

View: 1899

Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous examples, completely worked out, together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to make students comfortable in using advanced mathematical tools in junior, senior, and beginning graduate courses.
Release

Asymptotic Analysis of Differential Equations

Author: R. B. White

Publisher: World Scientific

ISBN: 1848166079

Category: Mathematics

Page: 405

View: 7364

"This is a useful volume in which a wide selection of asymptotic techniques is clearly presented in a form suitable for both applied mathematicians and Physicists who require an introduction to asymptotic techniques." --Book Jacket.
Release

Extrapolation Methods

Theory and Practice

Author: C. Brezinski,M. Redivo Zaglia

Publisher: Elsevier

ISBN: 0080506224

Category: Computers

Page: 474

View: 1590

This volume is a self-contained, exhaustive exposition of the extrapolation methods theory, and of the various algorithms and procedures for accelerating the convergence of scalar and vector sequences. Many subroutines (written in FORTRAN 77) with instructions for their use are provided on a floppy disk in order to demonstrate to those working with sequences the advantages of the use of extrapolation methods. Many numerical examples showing the effectiveness of the procedures and a consequent chapter on applications are also provided – including some never before published results and applications. Although intended for researchers in the field, and for those using extrapolation methods for solving particular problems, this volume also provides a valuable resource for graduate courses on the subject.
Release

Modern Mathematics for the Engineer: Second Series

Author: Edwin F. Beckenbach

Publisher: Courier Corporation

ISBN: 0486316122

Category: Technology & Engineering

Page: 480

View: 4315

The second in this two-volume series also contains original papers commissioned from prominent 20th-century mathematicians. A three-part treatment covers mathematical methods, statistical and scheduling studies, and physical phenomena. 1961 edition.
Release

Mathematics for the Analysis of Algorithms

Author: Daniel H. Greene,Donald E. Knuth

Publisher: Springer Science & Business Media

ISBN: 9780817635152

Category: Computers

Page: 132

View: 8798

This monograph collects some fundamental mathematical techniques that are required for the analysis of algorithms. It builds on the fundamentals of combinatorial analysis and complex variable theory to present many of the major paradigms used in the precise analysis of algorithms, emphasizing the more difficult notions. The authors cover recurrence relations, operator methods, and asymptotic analysis in a format that is concise enough for easy reference yet detailed enough for those with little background with the material.
Release

Asymptotic Techniques for Use in Statistics

Author: O. E. Barndorff-Nielsen,D. R. Cox

Publisher: Chapman and Hall/CRC

ISBN: N.A

Category: Mathematics

Page: 252

View: 2255

The use in statistical theory of approximate arguments based on such methods as local linearization (the delta method) and approxi mate normality has a long history. Such ideas play at least three roles. First they may give simple approximate answers to distributional problems where an exact solution is known in principle but difficult to implement. The second role is to yield higher-order expansions from which the accuracy of simple approximations may be assessed and where necessary improved. Thirdly the systematic development of a theoretical approach to statistical inference that will apply to quite general families of statistical models demands an asymptotic formulation, as far as possible one that will recover 'exact' results where these are available. The approximate arguments are developed by supposing that some defining quantity, often a sample size but more generally an amount of information, becomes large: it must be stressed that this is a technical device for generating approximations whose adequacy always needs assessing, rather than a 'physical' limiting notion. Of the three roles outlined above, the first two are quite close to the traditional roles of asymptotic expansions in applied mathematics and much ofthe very extensive literature on the asymptotic expansion of integrals and of the special functions of mathematical physics is quite directly relevant, although the recasting of these methods into a probability mould is quite often enlightening.
Release

An Introduction to Lebesgue Integration and Fourier Series

Author: Howard J. Wilcox,David L. Myers

Publisher: Courier Corporation

ISBN: 9780486682938

Category: Mathematics

Page: 159

View: 2967

This book arose out of the authors' desire to present Lebesgue integration and Fourier series on an undergraduate level, since most undergraduate texts do not cover this material or do so in a cursory way. The result is a clear, concise, well-organized introduction to such topics as the Riemann integral, measurable sets, properties of measurable sets, measurable functions, the Lebesgue integral, convergence and the Lebesgue integral, pointwise convergence of Fourier series and other subjects. The authors not only cover these topics in a useful and thorough way, they have taken pains to motivate the student by keeping the goals of the theory always in sight, justifying each step of the development in terms of those goals. In addition, whenever possible, new concepts are related to concepts already in the student's repertoire. Finally, to enable readers to test their grasp of the material, the text is supplemented by numerous examples and exercises. Mathematics students as well as students of engineering and science will find here a superb treatment, carefully thought out and well presented , that is ideal for a one semester course. The only prerequisite is a basic knowledge of advanced calculus, including the notions of compactness, continuity, uniform convergence and Riemann integration.
Release

Applied Asymptotic Analysis

Author: Peter David Miller

Publisher: American Mathematical Soc.

ISBN: 0821840789

Category: Mathematics

Page: 467

View: 8186

"The book is intended for a beginning graduate course on asymptotic analysis in applied mathematics and is aimed at students of pure and applied mathematics as well as science and engineering. The basic prerequisite is a background in differential equations, linear algebra, advanced calculus, and complex variables at the level of introductory undergraduate courses on these subjects."--BOOK JACKET.
Release

Asymptotic and Hybrid Methods in Electromagnetics

Author: Ivan V. Andronov,I. Andronov,F. Molinet,D. Bouche

Publisher: IET

ISBN: 0863414478

Category: Science

Page: 249

View: 8402

There have been significant developments in the field of numerical methods for diffraction problems in recent years, and as a result, it is now possible to perform computations with more than ten million unknowns. However, the importance of asymptotic methods should not be overlooked. Not only do they provide considerable physical insight into diffraction mechanisms, and can therefore aid the design of electromagnetic devices such as radar targets and antennas, some objects are still too large in terms of wavelengths to fall in the realm of numerical methods. Furthermore, very low Radar Cross Section objects are often difficult to compute using multiple methods. Finally, objects that are very large in terms of wavelength, but with complicated details, are still a challenge both for asymptotic and numerical methods. The best, but now widely explored, solution for these problems is to combine various methods in so called hybrid methods. Asymptotic and Hybrid Methods in Electromagnetics is based on a short course, and presents recent developments in the field.
Release

Asymptotic Expansions for Ordinary Differential Equations

Author: Wolfgang Wasow

Publisher: Courier Corporation

ISBN: 9780486495187

Category: Mathematics

Page: 374

View: 9690

"A book of great value . . . it should have a profound influence upon future research."--Mathematical Reviews. Hardcover edition. The foundations of the study of asymptotic series in the theory of differential equations were laid by Poincaré in the late 19th century, but it was not until the middle of this century that it became apparent how essential asymptotic series are to understanding the solutions of ordinary differential equations. Moreover, they have come to be seen as crucial to such areas of applied mathematics as quantum mechanics, viscous flows, elasticity, electromagnetic theory, electronics, and astrophysics. In this outstanding text, the first book devoted exclusively to the subject, the author concentrates on the mathematical ideas underlying the various asymptotic methods; however, asymptotic methods for differential equations are included only if they lead to full, infinite expansions. Unabridged Dover republication of the edition published by Robert E. Krieger Publishing Company, Huntington, N.Y., 1976, a corrected, slightly enlarged reprint of the original edition published by Interscience Publishers, New York, 1965. 12 illustrations. Preface. 2 bibliographies. Appendix. Index.
Release