An Illustrated Introduction to Topology and Homotopy

Author: Sasho Kalajdzievski

Publisher: CRC Press

ISBN: 1482220814

Category: Mathematics

Page: 485

View: 9156

An Illustrated Introduction to Topology and Homotopy explores the beauty of topology and homotopy theory in a direct and engaging manner while illustrating the power of the theory through many, often surprising, applications. This self-contained book takes a visual and rigorous approach that incorporates both extensive illustrations and full proofs. The first part of the text covers basic topology, ranging from metric spaces and the axioms of topology through subspaces, product spaces, connectedness, compactness, and separation axioms to Urysohn’s lemma, Tietze’s theorems, and Stone-Čech compactification. Focusing on homotopy, the second part starts with the notions of ambient isotopy, homotopy, and the fundamental group. The book then covers basic combinatorial group theory, the Seifert-van Kampen theorem, knots, and low-dimensional manifolds. The last three chapters discuss the theory of covering spaces, the Borsuk-Ulam theorem, and applications in group theory, including various subgroup theorems. Requiring only some familiarity with group theory, the text includes a large number of figures as well as various examples that show how the theory can be applied. Each section starts with brief historical notes that trace the growth of the subject and ends with a set of exercises.
Release

Introduction to Homotopy Theory

Author: Martin Arkowitz

Publisher: Springer Science & Business Media

ISBN: 9781441973290

Category: Mathematics

Page: 344

View: 2543

This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.
Release

Maß und Kategorie

Author: J.C. Oxtoby

Publisher: Springer-Verlag

ISBN: 364296074X

Category: Mathematics

Page: 112

View: 9500

Dieses Buch behandelt hauptsächlich zwei Themenkreise: Der Bairesche Kategorie-Satz als Hilfsmittel für Existenzbeweise sowie Die "Dualität" zwischen Maß und Kategorie. Die Kategorie-Methode wird durch viele typische Anwendungen erläutert; die Analogie, die zwischen Maß und Kategorie besteht, wird nach den verschiedensten Richtungen hin genauer untersucht. Hierzu findet der Leser eine kurze Einführung in die Grundlagen der metrischen Topologie; außerdem werden grundlegende Eigenschaften des Lebesgue schen Maßes hergeleitet. Es zeigt sich, daß die Lebesguesche Integrationstheorie für unsere Zwecke nicht erforderlich ist, sondern daß das Riemannsche Integral ausreicht. Weiter werden einige Begriffe aus der allgemeinen Maßtheorie und Topologie eingeführt; dies geschieht jedoch nicht nur der größeren Allgemeinheit wegen. Es erübrigt sich fast zu erwähnen, daß sich die Bezeichnung "Kategorie" stets auf "Bairesche Kategorie" be zieht; sie hat nichts zu tun mit dem in der homologischen Algebra verwendeten Begriff der Kategorie. Beim Leser werden lediglich grundlegende Kenntnisse aus der Analysis und eine gewisse Vertrautheit mit der Mengenlehre vorausgesetzt. Für die hier untersuchten Probleme bietet sich in natürlicher Weise die mengentheoretische Formulierung an. Das vorlie gende Buch ist als Einführung in dieses Gebiet der Analysis gedacht. Man könnte es als Ergänzung zur üblichen Grundvorlesung über reelle Analysis, als Grundlage für ein Se minar oder auch zum selbständigen Studium verwenden. Bei diesem Buch handelt es sich vorwiegend um eine zusammenfassende Darstellung; jedoch finden sich in ihm auch einige Verfeinerungen bekannter Resultate, namentlich Satz 15.6 und Aussage 20.4. Das Literaturverzeichnis erhebt keinen Anspruch auf Vollständigkeit. Häufig werden Werke zitiert, die weitere Literaturangaben enthalten.
Release

Introduction to Topology and Geometry

Author: Saul Stahl,Catherine Stenson

Publisher: John Wiley & Sons

ISBN: 1118546148

Category: Mathematics

Page: 536

View: 6085

An easily accessible introduction to over threecenturies of innovations in geometry Praise for the First Edition “. . . a welcome alternative to compartmentalizedtreatments bound to the old thinking. This clearly written,well-illustrated book supplies sufficient background to beself-contained.” —CHOICE This fully revised new edition offers the most comprehensivecoverage of modern geometry currently available at an introductorylevel. The book strikes a welcome balance between academic rigorand accessibility, providing a complete and cohesive picture of thescience with an unparalleled range of topics. Illustrating modern mathematical topics, Introduction toTopology and Geometry, Second Edition discusses introductorytopology, algebraic topology, knot theory, the geometry ofsurfaces, Riemann geometries, fundamental groups, and differentialgeometry, which opens the doors to a wealth of applications. Withits logical, yet flexible, organization, the SecondEdition: • Explores historical notes interspersed throughout theexposition to provide readers with a feel for how the mathematicaldisciplines and theorems came into being • Provides exercises ranging from routine to challenging,allowing readers at varying levels of study to master the conceptsand methods • Bridges seemingly disparate topics by creating thoughtfuland logical connections • Contains coverage on the elements of polytope theory, whichacquaints readers with an exposition of modern theory Introduction to Topology and Geometry, Second Edition is anexcellent introductory text for topology and geometry courses atthe upper-undergraduate level. In addition, the book serves as anideal reference for professionals interested in gaining a deeperunderstanding of the topic.
Release

Elementary Topology

Author: Michael C. Gemignani

Publisher: Courier Corporation

ISBN: 9780486665221

Category: Mathematics

Page: 270

View: 3407

Topology is one of the most rapidly expanding areas of mathematical thought: while its roots are in geometry and analysis, topology now serves as a powerful tool in almost every sphere of mathematical study. This book is intended as a first text in topology, accessible to readers with at least three semesters of a calculus and analytic geometry sequence. In addition to superb coverage of the fundamentals of metric spaces, topologies, convergence, compactness, connectedness, homotopy theory, and other essentials, Elementary Topology gives added perspective as the author demonstrates how abstract topological notions developed from classical mathematics. For this second edition, numerous exercises have been added as well as a section dealing with paracompactness and complete regularity. The Appendix on infinite products has been extended to include the general Tychonoff theorem; a proof of the Tychonoff theorem which does not depend on the theory of convergence has also been added in Chapter 7.
Release

Einführung in die Funktionalanalysis

Author: Reinhold Meise,Dietmar Vogt

Publisher: Springer-Verlag

ISBN: 3322803104

Category: Mathematics

Page: 416

View: 7065

Dieses Buch wendet sich an Studenten der Mathematik und der Physik, welche über Grundkenntnisse in Analysis und linearer Algebra verfügen.
Release

Introduction to Topology

Author: Theodore W. Gamelin,Robert Everist Greene

Publisher: Courier Corporation

ISBN: 0486406806

Category: Mathematics

Page: 234

View: 1224

This volume explains nontrivial applications of metric space topology to analysis, clearly establishing their relationship. Also, topics from elementary algebraic topology focus on concrete results with minimal algebraic formalism. Two chapters consider metric space and point-set topology;nbsp;the other 2 chaptersnbsp;discuss algebraic topological material.nbsp;Includes exercises, selected answers and 51 illustrations. 1983 edition.
Release

Math and Art

An Introduction to Visual Mathematics

Author: Sasho Kalajdzievski

Publisher: Chapman and Hall/CRC

ISBN: 9781584889137

Category: Mathematics

Page: 272

View: 1988

Math and Art: An Introduction to Visual Mathematics explores the potential of mathematics to generate visually appealing objects and reveals some of the beauty of mathematics. With a CD-ROM and a 16-page full-color insert, it includes numerous illustrations, computer-generated graphics, photographs, and art reproductions to demonstrate how mathematics can inspire art. Basic Math Topics and Their Visual Aspects Focusing on accessible, visually interesting, and mathematically relevant topics, the text unifies mathematics subjects through their visual and conceptual beauty. Sequentially organized according to mathematical maturity level, each chapter covers a cross section of mathematics, from fundamental Euclidean geometry, tilings, and fractals to hyperbolic geometry, platonic solids, and topology. For art students, the book stresses an understanding of the mathematical background of relatively complicated yet intriguing visual objects. For science students, it presents various elegant mathematical theories and notions. Comprehensive Material for a Math in Art Course Providing all of the material for a complete one-semester course on mathematics in art, this self-contained text shows how artistic practice with mathematics and a comprehension of mathematical concepts are needed to logically and creatively appreciate the field of mathematics.
Release

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 8202

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.
Release

A Combinatorial Introduction to Topology

Author: Michael Henle

Publisher: Courier Corporation

ISBN: 9780486679662

Category: Mathematics

Page: 310

View: 3010

Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.
Release

An Introduction to Algebraic Topology

Author: Joseph Rotman

Publisher: Springer Science & Business Media

ISBN: 9780387966786

Category: Mathematics

Page: 438

View: 1435

A clear exposition, with exercises, of the basic ideas of algebraic topology. Suitable for a two-semester course at the beginning graduate level, it assumes a knowledge of point set topology and basic algebra. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author explains the geometric or analytic origins of abstract concepts as they are introduced.
Release

Algebraic Topology

Author: Edwin H. Spanier

Publisher: Springer Science & Business Media

ISBN: 1468493221

Category: Mathematics

Page: 548

View: 9449

This book surveys the fundamental ideas of algebraic topology. The first part covers the fundamental group, its definition and application in the study of covering spaces. The second part turns to homology theory including cohomology, cup products, cohomology operations and topological manifolds. The final part is devoted to Homotropy theory, including basic facts about homotropy groups and applications to obstruction theory.
Release

Cubical Homotopy Theory

Author: Brian A. Munson,Ismar Volić

Publisher: Cambridge University Press

ISBN: 1316351939

Category: Mathematics

Page: N.A

View: 5459

Graduate students and researchers alike will benefit from this treatment of classical and modern topics in homotopy theory of topological spaces with an emphasis on cubical diagrams. The book contains 300 examples and provides detailed explanations of many fundamental results. Part I focuses on foundational material on homotopy theory, viewed through the lens of cubical diagrams: fibrations and cofibrations, homotopy pullbacks and pushouts, and the Blakers–Massey Theorem. Part II includes a brief example-driven introduction to categories, limits and colimits, an accessible account of homotopy limits and colimits of diagrams of spaces, and a treatment of cosimplicial spaces. The book finishes with applications to some exciting new topics that use cubical diagrams: an overview of two versions of calculus of functors and an account of recent developments in the study of the topology of spaces of knots.
Release

Combinatorial And Toric Homotopy: Introductory Lectures

Author: Darby Alastair,Grbic Jelena,Lu Zhi

Publisher: World Scientific

ISBN: 9813226587

Category: Mathematics

Page: 448

View: 9230

This volume consists of introductory lectures on the topics in the new and rapidly developing area of toric homotopy theory, and its applications to the current research in configuration spaces and braids, as well as to more applicable mathematics such as fr-codes and robot motion planning. The book starts intertwining homotopy theoretical and combinatorial ideas within the remits of toric topology and illustrates an attempt to classify in a combinatorial way polytopes known as fullerenes, which are important objects in quantum physics, quantum chemistry and nanotechnology. Toric homotopy theory is then introduced as a further development of toric topology, which describes properties of Davis–Januszkiewicz spaces, moment-angle complexes and their generalizations to polyhedral products. The book also displays the current research on configuration spaces, braids, the theory of limits over the category of presentations and the theory of fr-codes. As an application to robotics, the book surveys topological problems relevant to the motion planning problem of robotics and includes new results and constructions, which enrich the emerging area of topological robotics. The book is at research entry level addressing the core components in homotopy theory and their important applications in the sciences and thus suitable for advanced undergraduate and graduate students. Contents: Toric Homotopy Theory (Stephen Theriault)Fullerenes, Polytopes and Toric Topology (Victor M Buchstaber and Nikolay Yu Erokhovets)Around Braids (Vladimir Vershinin)Higher Limits, Homology Theories and fr-Codes (Sergei O Ivanov and Roman Mikhailov)Configuration Spaces and Robot Motion Planning Algorithms (Michael Farber)Cellular Stratified Spaces (Dai Tamaki) Readership: Advanced undergraduate and graduate students as well as researchers interested in homotopy theory and its applications in the sciences. Keywords: Toric Topology;Toric Homotopy;Configuration Space;Stratified Spaces;Braid Group;Fullerene;Polytope;Virtual Braid Group;Thompson Group;Robotics;Motion PlanningReview: Key Features: The first book in the area of toric homotopy theory consisting of introductory lectures on the topics and their applications to fr-codes and robot motion planning
Release

Introduction to Topological Manifolds

Author: John Lee

Publisher: Springer Science & Business Media

ISBN: 1441979409

Category: Mathematics

Page: 433

View: 4283

This book is an introduction to manifolds at the beginning graduate level, and accessible to any student who has completed a solid undergraduate degree in mathematics. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of differential geometry, algebraic topology, and related fields. Although this second edition has the same basic structure as the first edition, it has been extensively revised and clarified; not a single page has been left untouched. The major changes include a new introduction to CW complexes (replacing most of the material on simplicial complexes in Chapter 5); expanded treatments of manifolds with boundary, local compactness, group actions, and proper maps; and a new section on paracompactness.
Release