A Mathematical Primer for Social Statistics

Author: John Fox

Publisher: SAGE

ISBN: 1412960800

Category: Mathematics

Page: 170

View: 9399

Beyond the introductory level, learning and effectively using statistical methods in the social sciences requires some knowledge of mathematics. This handy volume introduces the areas of mathematics that are most important to applied social statistics.
Release

Regressionsmodelle für Zustände und Ereignisse

Eine Einführung

Author: Michael Windzio

Publisher: Springer-Verlag

ISBN: 3531188526

Category: Social Science

Page: 282

View: 2636

In den letzten 20 Jahren hat die sozialwissenschaftliche Forschung vermehrt ihre Aufmerksamkeit auf Ereignisse gerichtet, die entweder im Zeitverlauf oder in definierten Zeitintervallen eintreten. Die für die statistische Analyse dieser Ereignisse entwickelten Regressionsverfahren werden in diesem einführenden Lehrbuch anschaulich und anwendungsorientiert dargestellt. Gemeinsam ist diesen Verfahren, dass sie für abhängige Variablen entwickelt wurden, die nicht stetig normal verteilt sind – was bei Ereignissen eher die Regel ist. Die lineare Kombination von erklärenden Variablen und geschätzten Koeffizienten wird über je spezifische Linkfunktionen transformiert, um die letztlich interessierenden zu erklärenden Größen vorherzusagen.
Release

Statistical Methods for the Social and Behavioural Sciences

A Model-Based Approach

Author: David B. Flora

Publisher: SAGE

ISBN: 1526421925

Category: Social Science

Page: 472

View: 716

Statistical methods in modern research increasingly entail developing, estimating and testing models for data. Rather than rigid methods of data analysis, the need today is for more flexible methods for modelling data. In this logical, easy-to-follow and exceptionally clear book, David Flora provides a comprehensive survey of the major statistical procedures currently used. His innovative model-based approach teaches you how to: Understand and choose the right statistical model to fit your data Match substantive theory and statistical models Apply statistical procedures hands-on, with example data analyses Develop and use graphs to understand data and fit models to data Work with statistical modeling principles using any software package Learn by applying, with input and output files for R, SAS, SPSS, and Mplus. Statistical Methods for the Social and Behavioural Sciences: A Model Based Approach is the essential guide for those looking to extend their understanding of the principles of statistics, and begin using the right statistical modeling method for their own data. It is particularly suited to second or advanced courses in statistical methods across the social and behavioural sciences.
Release

Applied Regression Analysis and Generalized Linear Models

Author: John Fox

Publisher: SAGE Publications

ISBN: 1483352528

Category: Social Science

Page: 688

View: 8124

Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Second Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material throughout the book. Key Updates to the Second Edition: Provides greatly enhanced coverage of generalized linear models, with an emphasis on models for categorical and count data Offers new chapters on missing data in regression models and on methods of model selection Includes expanded treatment of robust regression, time-series regression, nonlinear regression, and nonparametric regression Incorporates new examples using larger data sets Includes an extensive Web site at http://www.sagepub.com/fox that presents appendixes, data sets used in the book and for data-analytic exercises, and the data-analytic exercises themselves Intended Audience: This core text will be a valuable resource for graduate students and researchers in the social sciences (particularly sociology, political science, and psychology) and other disciplines that employ linear and related models for data analysis.
Release

The Association Graph and the Multigraph for Loglinear Models

Author: Harry J. Khamis

Publisher: SAGE

ISBN: 1452238952

Category: Mathematics

Page: 136

View: 9293

The Association Graph and the Multigraph for Loglinear Models will help students, particularly those studying the analysis of categorical data, to develop the ability to evaluate and unravel even the most complex loglinear models without heavy calculations or statistical software. This supplemental text reviews loglinear models, explains the association graph, and introduces the multigraph to students who may have little prior experience of graphical techniques, but have some familiarity with categorical variable modeling. The author presents logical step-by-step techniques from the point of view of the practitioner, focusing on how the technique is applied to contingency table data and how the results are interpreted.
Release

Propensity Score Methods and Applications

Author: Haiyan Bai,M. H. Clark

Publisher: SAGE Publications

ISBN: 1506378064

Category: Social Science

Page: 136

View: 5746

A concise, introductory text, Propensity Score Methods and Applications describes propensity score methods (PSM) and how they are used to balance the distributions of observed covariates between treatment conditions as a means to reduce selection bias. This new QASS title specifically focuses on the procedures of implementing PSM for research in social sciences, instead of merely demonstrating the effectiveness of the method. Using succinct and approachable language to introduce the basic concepts of PSM, authors Haiyan Bai and M. H. Clark present basic concepts, assumptions, procedures, available software packages, and step-by-step examples for implementing PSM using real-world data, with exercises at the end of each chapter allowing readers to replicate examples on their own.
Release

Statistics without Mathematics

Author: David J. Bartholomew

Publisher: SAGE

ISBN: 1473934338

Category: Social Science

Page: 192

View: 7496

This is a book about the ideas that drive statistics. It is an ideal primer for students who need an introduction to the concepts of statistics without the added confusion of technical jargon and mathematical language. It introduces the intuitive thinking behind standard procedures, explores the process of informal reasoning, and uses conceptual frameworks to provide a foundation for students new to statistics. It showcases the expertise we have all developed from living in a data saturated society, increases our statistical literacy and gives us the tools needed to approach statistical mathematics with confidence. Key topics include: Variability Standard Distributions Correlation Relationship Sampling Inference An engaging, informal introduction this book sets out the conceptual tools required by anyone undertaking statistical procedures for the first time or for anyone needing a fresh perspective whilst studying the work of others.
Release

Book of Martyrs

Or a History of the Lives, Sufferings, and Triumphant Deaths, of the Primitive as Well as Protestant Martyrs (1830)

Author: John Fox

Publisher: Literary Licensing, LLC

ISBN: 9781498140126

Category:

Page: 624

View: 1866

This Is A New Release Of The Original 1830 Edition.
Release

Multiple and Generalized Nonparametric Regression

Author: John Fox

Publisher: SAGE Publications, Incorporated

ISBN: N.A

Category: Social Science

Page: 83

View: 5134

This book builds on John Fox’s previous volume in the QASS Series, Non Parametric Simple Regression. In this book, the reader learns how to estimate and plot smooth functions when there are multiple independent variables.
Release

A Mathematics Course for Political and Social Research

Author: Will H. Moore,David A. Siegel

Publisher: Princeton University Press

ISBN: 140084861X

Category: Political Science

Page: 456

View: 4586

Political science and sociology increasingly rely on mathematical modeling and sophisticated data analysis, and many graduate programs in these fields now require students to take a "math camp" or a semester-long or yearlong course to acquire the necessary skills. Available textbooks are written for mathematics or economics majors, and fail to convey to students of political science and sociology the reasons for learning often-abstract mathematical concepts. A Mathematics Course for Political and Social Research fills this gap, providing both a primer for math novices in the social sciences and a handy reference for seasoned researchers. The book begins with the fundamental building blocks of mathematics and basic algebra, then goes on to cover essential subjects such as calculus in one and more than one variable, including optimization, constrained optimization, and implicit functions; linear algebra, including Markov chains and eigenvectors; and probability. It describes the intermediate steps most other textbooks leave out, features numerous exercises throughout, and grounds all concepts by illustrating their use and importance in political science and sociology. Uniquely designed and ideal for students and researchers in political science and sociology Uses practical examples from political science and sociology Features "Why Do I Care?" sections that explain why concepts are useful Includes numerous exercises Complete online solutions manual (available only to professors, email david.siegel at duke.edu, subject line "Solution Set") Selected solutions available online to students
Release

Understanding Multivariate Research

A Primer For Beginning Social Scientists

Author: William Berry,Mitchell Sanders

Publisher: Westview Press

ISBN: 9780813346281

Category: Political Science

Page: 104

View: 6570

Although nearly all major social science departments offer graduate students training in quantitative methods, the typical sequencing of topics generally delays training in regression analysis and other multivariate techniques until a student's second year. William Berry and Mitchell Sanders's Understanding Multivariate Research fills this gap with a concise introduction to regression analysis and other multivariate techniques. Their book is designed to give new graduate students a grasp of multivariate analysis sufficient to understand the basic elements of research relying on such analysis that they must read prior to their formal training in quantitative methods. Berry and Sanders effectively cover the techniques seen most commonly in social science journals--regression (including nonlinear and interactive models), logit, probit, and causal models/path analysis. The authors draw on illustrations from across the social sciences, including political science, sociology, marketing and higher education. All topics are developed without relying on the mathematical language of probability theory and statistical inference. Readers are assumed to have no background in descriptive or inferential statistics, and this makes the book highly accessible to students with no prior graduate course work.
Release

Converting Data into Evidence

A Statistics Primer for the Medical Practitioner

Author: Alfred DeMaris,Steven H. Selman

Publisher: Springer Science & Business Media

ISBN: 1461477921

Category: Medical

Page: 221

View: 1610

Converting Data into Evidence: A Statistics Primer for the Medical Practitioner provides a thorough introduction to the key statistical techniques that medical practitioners encounter throughout their professional careers. These techniques play an important part in evidence-based medicine or EBM. Adherence to EBM requires medical practitioners to keep abreast of the results of medical research as reported in their general and specialty journals. At the heart of this research is the science of statistics. It is through statistical techniques that researchers are able to discern the patterns in the data that tell a clinical story worth reporting. The authors begin by discussing samples and populations, issues involved in causality and causal inference, and ways of describing data. They then proceed through the major inferential techniques of hypothesis testing and estimation, providing examples of univariate and bivariate tests. The coverage then moves to statistical modeling, including linear and logistic regression and survival analysis. In a final chapter, a user-friendly introduction to some newer, cutting-edge, regression techniques will be included, such as fixed-effects regression and growth-curve modeling. A unique feature of the work is the extensive presentation of statistical applications from recent medical literature. Over 30 different articles are explicated herein, taken from such journals. With the aid of this primer, the medical researcher will also find it easier to communicate with the statisticians on his or her research team. The book includes a glossary of statistical terms for easy access. This is an important reference work for the shelves of physicians, nurses, nurse practitioners, physician’s assistants, medical students, and residents.
Release

Statistical Methods for Survival Data Analysis

Author: Elisa T. Lee,John Wenyu Wang

Publisher: John Wiley & Sons

ISBN: 1118593057

Category: Mathematics

Page: 512

View: 7865

Praise for the Third Edition “. . . an easy-to read introduction to survival analysiswhich covers the major concepts and techniques of thesubject.” —Statistics in Medical Research Updated and expanded to reflect the latest developments,Statistical Methods for Survival Data Analysis, FourthEdition continues to deliver a comprehensive introduction tothe most commonly-used methods for analyzing survival data.Authored by a uniquely well-qualified author team, the FourthEdition is a critically acclaimed guide to statistical methods withapplications in clinical trials, epidemiology, areas of business,and the social sciences. The book features many real-world examplesto illustrate applications within these various fields, althoughspecial consideration is given to the study of survival data inbiomedical sciences. Emphasizing the latest research and providing the mostup-to-date information regarding software applications in thefield, Statistical Methods for Survival Data Analysis, FourthEdition also includes: Marginal and random effect models for analyzing correlatedcensored or uncensored data Multiple types of two-sample and K-sample comparisonanalysis Updated treatment of parametric methods for regression modelfitting with a new focus on accelerated failure time models Expanded coverage of the Cox proportional hazards model Exercises at the end of each chapter to deepen knowledge of thepresented material Statistical Methods for Survival Data Analysis is anideal text for upper-undergraduate and graduate-level courses onsurvival data analysis. The book is also an excellent resource forbiomedical investigators, statisticians, and epidemiologists, aswell as researchers in every field in which the analysis ofsurvival data plays a role.
Release

Applied Linear Regression

Author: Sanford Weisberg

Publisher: John Wiley & Sons

ISBN: 1118594851

Category: Mathematics

Page: 368

View: 9114

Praise for the Third Edition "...this is an excellent book which could easily be used as acourse text..." —International Statistical Institute The Fourth Edition of Applied LinearRegression provides a thorough update of the basic theoryand methodology of linear regression modeling. Demonstrating thepractical applications of linear regression analysis techniques,the Fourth Edition uses interesting, real-worldexercises and examples. Stressing central concepts such as model building, understandingparameters, assessing fit and reliability, and drawing conclusions,the new edition illustrates how to develop estimation, confidence,and testing procedures primarily through the use of least squaresregression. While maintaining the accessible appeal of eachprevious edition,Applied Linear Regression, FourthEdition features: Graphical methods stressed in the initial exploratory phase,analysis phase, and summarization phase of an analysis In-depth coverage of parameter estimates in both simple andcomplex models, transformations, and regression diagnostics Newly added material on topics including testing, ANOVA, andvariance assumptions Updated methodology, such as bootstrapping, cross-validationbinomial and Poisson regression, and modern model selectionmethods Applied Linear Regression, Fourth Edition is anexcellent textbook for upper-undergraduate and graduate-levelstudents, as well as an appropriate reference guide forpractitioners and applied statisticians in engineering, businessadministration, economics, and the social sciences.
Release

The Analysis of Covariance and Alternatives

Statistical Methods for Experiments, Quasi-Experiments, and Single-Case Studies

Author: Bradley Huitema

Publisher: John Wiley & Sons

ISBN: 9781118067468

Category: Mathematics

Page: 480

View: 3458

A complete guide to cutting-edge techniques and best practices for applying covariance analysis methods The Second Edition of Analysis of Covariance and Alternatives sheds new light on its topic, offering in-depth discussions of underlying assumptions, comprehensive interpretations of results, and comparisons of distinct approaches. The book has been extensively revised and updated to feature an in-depth review of prerequisites and the latest developments in the field. The author begins with a discussion of essential topics relating to experimental design and analysis, including analysis of variance, multiple regression, effect size measures and newly developed methods of communicating statistical results. Subsequent chapters feature newly added methods for the analysis of experiments with ordered treatments, including two parametric and nonparametric monotone analyses as well as approaches based on the robust general linear model and reversed ordinal logistic regression. Four groundbreaking chapters on single-case designs introduce powerful new analyses for simple and complex single-case experiments. This Second Edition also features coverage of advanced methods including: Simple and multiple analysis of covariance using both the Fisher approach and the general linear model approach Methods to manage assumption departures, including heterogeneous slopes, nonlinear functions, dichotomous dependent variables, and covariates affected by treatments Power analysis and the application of covariance analysis to randomized-block designs, two-factor designs, pre- and post-test designs, and multiple dependent variable designs Measurement error correction and propensity score methods developed for quasi-experiments, observational studies, and uncontrolled clinical trials Thoroughly updated to reflect the growing nature of the field, Analysis of Covariance and Alternatives is a suitable book for behavioral and medical scineces courses on design of experiments and regression and the upper-undergraduate and graduate levels. It also serves as an authoritative reference work for researchers and academics in the fields of medicine, clinical trials, epidemiology, public health, sociology, and engineering.
Release

Nonparametric Statistical Methods

Author: Myles Hollander,Douglas A. Wolfe,Eric Chicken

Publisher: John Wiley & Sons

ISBN: 1118553292

Category: Mathematics

Page: 848

View: 5843

Praise for the Second Edition “This book should be an essential part of the personallibrary of every practicingstatistician.”—Technometrics Thoroughly revised and updated, the new edition of NonparametricStatistical Methods includes additional modern topics andprocedures, more practical data sets, and new problems fromreal-life situations. The book continues to emphasize theimportance of nonparametric methods as a significant branch ofmodern statistics and equips readers with the conceptual andtechnical skills necessary to select and apply the appropriateprocedures for any given situation. Written by leading statisticians, Nonparametric StatisticalMethods, Third Edition provides readers with crucialnonparametric techniques in a variety of settings, emphasizing theassumptions underlying the methods. The book provides an extensivearray of examples that clearly illustrate how to use nonparametricapproaches for handling one- or two-sample location and dispersionproblems, dichotomous data, and one-way and two-way layoutproblems. In addition, the Third Edition features: The use of the freely available R software to aid incomputation and simulation, including many new R programs writtenexplicitly for this new edition New chapters that address density estimation, wavelets,smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science,astronomy, biology, criminology, education, engineering,environmental science, geology, home economics, medicine,oceanography, physics, psychology, sociology, and spacescience Nonparametric Statistical Methods, Third Edition is anexcellent reference for applied statisticians and practitioners whoseek a review of nonparametric methods and their relevantapplications. The book is also an ideal textbook forupper-undergraduate and first-year graduate courses in appliednonparametric statistics.
Release

Visual Statistics

Seeing Data with Dynamic Interactive Graphics

Author: Forrest W. Young,Pedro M. Valero-Mora,Michael Friendly

Publisher: John Wiley & Sons

ISBN: 1118165411

Category: Mathematics

Page: 363

View: 5769

A visually intuitive approach to statistical data analysis Visual Statistics brings the most complex and advanced statisticalmethods within reach of those with little statistical training byusing animated graphics of the data. Using ViSta: The VisualStatistics System-developed by Forrest Young and Pedro Valero-Moraand available free of charge on the Internet-students can easilycreate fully interactive visualizations from relevant mathematicalstatistics, promoting perceptual and cognitive understanding of thedata's story. An emphasis is placed on a paradigm for understandingdata that is visual, intuitive, geometric, and active, rather thanone that relies on convoluted logic, heavy mathematics, systems ofalgebraic equations, or passive acceptance of results. A companion Web site complements the book by further demonstratingthe concept of creating interactive and dynamic graphics. The bookprovides users with the opportunity to view the graphics in adynamic way by illustrating how to analyze statistical data andexplore the concepts of visual statistics. Visual Statistics addresses and features the followingtopics: * Why use dynamic graphics? * A history of statistical graphics * Visual statistics and the graphical user interface * Visual statistics and the scientific method * Character-based statistical interface objects * Graphics-based statistical interfaces * Visualization for exploring univariate data This is an excellent textbook for undergraduate courses in dataanalysis and regression, for students majoring or minoring instatistics, mathematics, science, engineering, and computerscience, as well as for graduate-level courses in mathematics. Thebook is also ideal as a reference/self-study guide for engineers,scientists, and mathematicians. With contributions by highly regarded professionals in the field,Visual Statistics not only improves a student's understanding ofstatistics, but also builds confidence to overcome problems thatmay have previously been intimidating.
Release